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random vector

o definition: an n-dimensional random vector is a function from the sample space S into the
n-dimensional Euclidean space R”
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random vector

o definition: an n-dimensional random vector is a function from the sample space S into the
n-dimensional Euclidean space R”

o example: consider the experiment of tossing two fair dice, and let X and Y denote the sum of the
two dice and the absolute difference of the two dice, respectively

PX=5Y=3) = P{L4).@41}) = = = =
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random

vector

definition: an n-dimensional random vector is a function from the sample space S into the
n-dimensional Euclidean space R”

example: consider the experiment of tossing two fair dice, and let X and Y denote the sum of the
two dice and the absolute difference of the two dice, respectively

P(X:57Y:3) = P({(114)7(411)}) = 2 — 7o

definition: let (X, Y') denote a discrete bivariate random vector, then the joint pmf fx v(x, y)
from R? into R is given by f(x,y) =P(X = x, Y = y)

we can now discuss probabilities of events defined in terms of (X, Y).
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joint pmf

e the joint pmf completely characterizes the probability distribution of a random vector (X, Y) just
as in the univariate case

P((X,Y)EA) = Y fov(xy)
(x;y)eA
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e expectations are defined

Elg(X,V)] = Y. &lxy)fv(xy)
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joint pmf

e the joint pmf completely characterizes the probability distribution of a random vector (X, Y) just
as in the univariate case

P((X,Y)EA) = Y fov(xy)
(x;y)eA

e expectations are defined

Elg(X,V)] = Y. &lxy)fv(xy)

(x,y)€R?

o fortunately, the expectation operator continues to have the same properties as before; in particular

Elag(X,Y)+bh(X,Y)+c] = aE[g(X,Y)]+bE[A(X,Y)]+c
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properties of joint pdfs

joint pmf satisfies the usual properties (verify), namely
(i) fx,v(x,y) >0 for any (x,y)

(i) Spuyyens frov(x,y) =1

and thus it is a well-defined probability distribution.
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marginal pmfs

o there may be events, probabilities, moments or expectations that involve only one of the random
variables in the vector.

o theorem (CB 4.1.6): let (X, Y') denote a discrete bivariate random vector with joint pmf
fx,v(x,y), then the marginal pmfs of X and Y are respectively

i(x) = PX=x) = > fov(xy)

yER

P(Y=y) = > fvlxy)

xER

fr(y)

we use the subscript X in fx(x) to emphasize the distinction from fx v(x,y).
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same marginals, different joint pmfs

e same marginal pmfs =4 same joint pmfs.

7 / 80



same marginals, different joint pmfs

e same marginal pmfs =4 same joint pmfs.

e counterexample: define

1
fx,v(0,0) = fxy(0,1) = 5

1
fxv(1,0) = fy(1,1) = 3
fx,y(x,y) = 0 for any other (x,y)
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same marginals, different joint pmfs

o same marginal pmfs =4 same joint pmfs
e counterexample: define
fx,v(0,0)
fx,v(1,0)
fx.v(x,y)
the marginals are
x(0) =

A (0) =

Nl = W+~

fx,v(0,1)

fx,v(1,1)

0 for any other

fx(1) =

fr(l) =

NI = WIN

Wl ol

—

X, ¥)

7 / 80



same marginals, different joint pmfs

e counterexample (cont'd): now define

1 3
exv(0,0) = 5 &x(01) = 5

5 3
exv(1,0) = 5 exv(l1l) = 5
gxv(x,y) = 0 for any other (x,y)
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same marginals, different joint pmfs

e counterexample (cont'd): now define

gxv(0,0) =

gxv(1,0) =

gxv(x,y) =
the marginals are

gx(0) = %,

er(0) = 3,

e fx(0) = gx(0), fx(1) = gx(1), #+(0) = gv(0),

1 3
D gxv(0,1) = 'R
5 3
7 exv(1,1) = IR

0 for any other (x,y)

gx(1) =

gv(l) =

NI~ WIN

fr(1) = gv(1) but fx,v(x,y) # gxv(x,y).
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same marginals, different joint pmfs

e counterexample (cont'd): now define

gxv(0,0) = % gxv(0,1) = 1%

gxv(1,0) = % gxv(1,1) = 1%

gxv(x,y) = 0 for any other (x,y)
the marginals are

&) = 3. ex(1) = 2

o0 = 2, &) = ;

o fx(0) = gx(0), fx(1) = gx(1), fv(0) = gv(0), fr(1) = gv(1) but fx,v(x,y) # gxv(x,y).

e intuitive since marginals contain less information than joint pmfs.
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joint and marginal pdfs

o definition: a function fx yv(x,y) from R? into R is the joint pdf of the continuous bivariate
random vector (X, Y) if, for every A C R?,

P((X,Y)€A) =[] fylxy)dxdy

— the joint pdf is such that fx y(x,y) > 0 for all (x,y) € R? and that [ _ [ fx y(x,y)dxdy =1
— expectations are just like in the discrete case, but with integrals

B,V = [ [ etanmoyixy)axdy
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joint and marginal pdfs
o definition: a function fx yv(x,y) from R? into R is the joint pdf of the continuous bivariate

random vector (X, Y) if, for every A C R?,

P((X,Y)€A) =[] fylxy)dxdy

— the joint pdf is such that fx y(x,y) > 0 for all (x,y) € R? and that [ _ [ fx y(x,y)dxdy =1
— expectations are just like in the discrete case, but with integrals

Eg(X,Y)] = / / g(x, y)fx,y(x,y)dxdy
—oo J —oo
o definition: the marginal pdfs are given by (you can also verify that this distribution is proper)

fx(x) = / fx,v(x,y)dy, —o00 < x < o0

—o0

fr(y)

/ fx,y(x,y)dx, —co<y < o0

— o0
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example

o example: let (X, Y) denote a continuous bivariate random vector with joint pdf fx v (x, y) = 6xy?
for (x, y) in the unit square and zero otherwise.

o5} [eS] 1 1
/ / fx,v(x,y)dxdy = / / 6xy> dx dy
—oo J —oo 0 0
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example

o example: let (X, Y) denote a continuous bivariate random vector with joint pdf fx v (x, y) = 6xy?
for (x, y) in the unit square and zero otherwise.

o5} [eS] 1 1
/ / fx,v(x, y) dxdy / / 6xy> dx dy
—oo J —oo 0 0

1
1
/o (3x2y2)0 dy
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example

o example: let (X, Y) denote a continuous bivariate random vector with joint pdf fx v (x, y) = 6xy?
for (x, y) in the unit square and zero otherwise.

o5} [eS] 1 1
/ / fx,v(x, y) dxdy / / 6xy> dx dy
—oo J —oo 0 0

1 1
/ (3x2y2)c1) dy = / 3y’ dy = (y3)(1) =1
0

0
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example

o example: let (X, Y) denote a continuous bivariate random vector with joint pdf fx v (x, y) = 6xy?
for (x, y) in the unit square and zero otherwise.

o5} [eS] 1 1
/ / fx,v(x, y) dxdy / / 6xy> dx dy
—oo J —oo 0 0

1 1
/ (3x2y2)c1) dy = / 3y’ dy = (y3)(1) =1

0

0
s} 1

fx(x) = / fxy(x,y)dy = bxy’dy = 6x(y3/3)(1) = 2x
oo 0
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example

o example: let (X, Y) denote a continuous bivariate random vector with joint pdf fx v (x, y) = 6xy?
for (x, y) in the unit square and zero otherwise.

o5} [eS] 1 1
/ / fx,v(x, y) dxdy / / 6xy> dx dy
—oo J —oo 0 0

1 1
/ (3x2y2)c1) dy = / 3y’ dy = (y3)(1) =1
0

0

0o 1
fx(x) / fx,v(x,y)dy /6xy2dy = 6x(y3/3); = 2x
0o 0

') 1
frly) = / fov(xy)dx = / 6y’ dx = 62 (x*/2)) = 3y°
%) 0
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example

o example (cont'd): let (X, Y) denote a continuous bivariate random vector with joint pdf
fx.v(x,y) = 6xy® for (x,y) in the unit square and zero otherwise.

11 / 80



example

o example (cont'd): let (X, Y) denote a continuous bivariate random vector with joint pdf
fx.v(x,y) = 6xy® for (x,y) in the unit square and zero otherwise.

— Consider now calculating the probability that X + Y > 1.
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example

o example (cont'd): let (X, Y) denote a continuous bivariate random vector with joint pdf
fx,v(x,y) = 6xy? for (x,y) in the unit square and zero otherwise.

— Consider now calculating the probability that X + Y > 1.

— The region over which we integrate is

A = {(6y)ix+y>10<x<1,0<y<1}
{(x,y) :x>1-y,0<x<1,0<y <1}
{(x,y):1-y<x<10<x<1l,0<y<1}
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example

o example (cont'd): let (X, Y) denote a continuous bivariate random vector with joint pdf

fx,v(x,y) = 6xy? for (x,y) in the unit square and zero otherwise.
— Consider now calculating the probability that X + Y > 1.

— The region over which we integrate is

A = {(6y)ix+y>10<x<1,0<y<1}
{(x,y) :x>1-y,0<x<1,0<y <1}
{(x,y):1-y<x<10<x<1l,0<y<1}

— So

1 1
PX+Y>1) = // 6xy2dxdy — 09
0 1—y
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a more complicated example

o example 2: let (X, Y) denote a continuous bivariate random vector with joint pdf
fxy(x,y)=e ¥ for0 < x <y < oo.
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a more complicated example

o example 2: let (X, Y) denote a continuous bivariate random vector with joint pdf
fxy(x,y)=e ¥ for0 < x <y < oo.

PX+Y>1) = 1-PX+Y<1)

1/2 pl-x
1 —/ / eV dydx
0 X
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a more complicated example

o example 2: let (X, Y) denote a continuous bivariate random vector with joint pdf
fxy(x,y)=e ¥ for0 < x <y < oo.

PX+Y>1) = 1-PX+Y<1)

1/2 pl—x
= 1 —/ / eV dydx
0 X
1/2
= 1 —/ (e_x — e_(l_x)) dx
0
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a more complicated example

o example 2: let (X, Y) denote a continuous bivariate random vector with joint pdf
fxy(x,y)=e ¥ for0 < x <y < oo.

PX+Y>1) = 1-PX+Y<1)

1/2 pl—x
1 —/ / eV dydx
0 X
1/2
1— / (e_x — e_(l_x)) dx
0

1-— (—e_% + €% — e : + e_l)
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a more complicated example

o example 2: let (X, Y) denote a continuous bivariate random vector with joint pdf
fxy(x,y)=e ¥ for0 < x <y < oo.

PX+Y>1) = 1-PX+Y<1)

1/2 pl—x
= 1 —/ / eV dydx
0 X
1/2
= 1- / (e_x — e_(l_x)) dx
0

= 1—(—e_%+e°—e_%—|—e_1)
= 212 _¢t

given that Qxy = {(x,y) : x+y > 1,0 < x < y < oo} is the unbounded region with three sides
givenby x=y, x+y =1 and x=0
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regions from the example
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joint cdf

e the joint probability distribution of (X, Y) is also completely described with the joint cdf
Fxy(x,y) =P(X <x,Y <y) forall (x,y) € R?
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joint cdf

e the joint probability distribution of (X, Y) is also completely described with the joint cdf
Fxy(x,y) =P(X <x,Y <y) forall (x,y) € R?

e characterization: not very handy for discrete random vectors, but extremely useful for continuous

random vectors given that
F)(yXy / / fnyVdUdV

and hence, by the fundamental theorem of calculus,

PFx,y(x,y)

axdy = fxy(xy)

at any continuity point of fx, y(x,y)
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2. Conditional distribution and independence
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conditional probability

o definition: let (X, Y) denote a discrete bivariate random vector with joint pmf fx y(x, y) and

marginals fx(x) and fy(y), then the conditional pmf of Y given X = x is

fx,v (x,¥)

Fixlvl) = B(Y =ylX=x) = 200

for any x such that fx(x) =P(X =x) >0
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conditional probability

o definition: let (X, Y) denote a discrete bivariate random vector with joint pmf fx y(x, y) and

marginals fx(x) and fy(y), then the conditional pmf of Y given X = x is

frx(ylx) = P(Y =y[X=x) = %

for any x such that fx(x) =P(X =x) >0
e just checking to be on the safe side. ..

(i) fyx(y[x) > 0 for every y given that fx y(x,y) > 0 and fx(x) >0

i Py X, (x,y) X
(ii) Zy fy\x(y\x) = % — () _q
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continuous random variables

o if X and Y are continuous random variables, then P(X = x) = 0 for every value of x and hence
we cannot divide the joint probability by the probability of the conditioning event

e however, we may still define the conditional probability of Y given X = x analogously to the
discrete case with pdfs replacing pmfs
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continuous random variables

o if X and Y are continuous random variables, then P(X = x) = 0 for every value of x and hence
we cannot divide the joint probability by the probability of the conditioning event

e however, we may still define the conditional probability of Y given X = x analogously to the
discrete case with pdfs replacing pmfs

o definition: let (X, Y) be a continuous bivariate random vector with joint pdf fx,v(x,y) and
marginals fx(x) and fy(y), then the conditional pdf of Y given X = x is

fx,y(x,y
frix(ylx) = %
for any x such that fx(x) > 0. Analogously,
fx,y(x,y
fav(aly) = 2]

for any y such that fy(y) > 0.
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conditional expectation

e conditional pdfs/pmfs are useful not only to compute conditional probabilities, but also to
calculate conditional expectations

>, 8()fvix(ylx) if discrete
E[g(V)|X = ] =
JLX;O g(y)fvix(y|x)dy if continuous
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conditional expectation

e conditional pdfs/pmfs are useful not only to compute conditional probabilities, but also to
calculate conditional expectations

>, 8()fvix(ylx) if discrete
E[g(V)|X = ] =
ff; g(y)fyix(y|x)dy if continuous

o the conditional expectation satisfies all the properties of the usual expectation operator

e in particular, E(Y|X) provides the best guess at Y based on knowledge of X in a MSE sense (you
can try to show this!)
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conditional expectation

e conditional pdfs/pmfs are useful not only to compute conditional probabilities, but also to
calculate conditional expectations

>, 8()fvix(ylx) if discrete
Elg(V)IX =] =
ff; g(y)fyix(y|x)dy if continuous

o the conditional expectation satisfies all the properties of the usual expectation operator

e in particular, E(Y|X) provides the best guess at Y based on knowledge of X in a MSE sense (you
can try to show this!)

e note that fy|x(y|x) is function of x. So we really have a family of distributions, one for each x,

possibly with different E(Y|X = x).

— the notation Y|X describes the entire family of distributions.

17 / 80



interesting example

e let's see a case where, even though the conditional variance does not depend on the value of x,
knowledge of the latter considerably reduces the variability of Y
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e let's see a case where, even though the conditional variance does not depend on the value of x,
knowledge of the latter considerably reduces the variability of Y

e example: let (X, Y) have a joint pdf fx y(x,y) = e™” for 0 < x < y < o0, then

fx(x) = /oo fx,v(x,y)dy

— 00
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interesting example

e let's see a case where, even though the conditional variance does not depend on the value of x,

knowledge of the latter considerably reduces the variability of Y
e example: let (X, Y) have a joint pdf fx y(x,y) = e™” for 0 < x < y < o0, then

fx(X)

frix(vx)

= / fxy(x,y)dy = / e’dy = e”

— f;Y(XJ/)
fx(X)
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fyix(ylx) = % = e U fory>x

and hence X ~ Exp(1) and Y|X = x is also exponential with location parameter x
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e let's see a case where, even though the conditional variance does not depend on the value of x,

knowledge of the latter considerably reduces the variability of Y
e example: let (X, Y) have a joint pdf fx y(x,y) = e™” for 0 < x < y < o0, then

fx(X)

frix(vx)

and hence X ~ Exp(1) and Y|X = x is also exponential with location parameter x

E(Y|X = x)

= / fxy(x,y)dy = / e’dy = e”

fx Y(X7Y) —(y—x)
- fory > x
i (x) g

= / Yiix(ylx)dy = / ye U0dy =
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interesting example

e let's see a case where, even though the conditional variance does not depend on the value of x,
knowledge of the latter considerably reduces the variability of Y

e example: let (X, Y) have a joint pdf fx y(x,y) = e™” for 0 < x < y < o0, then

fx(X)

frix(vx)

fx.v(x,y)dy

oo
/ eVdy = e~

= e U fory>x

f;,ovo(xy y)
fx (X)

and hence X ~ Exp(1) and Y|X = x is also exponential with location parameter x

E(Y|X = x)

var(Y|X = x)

/ Yfyix(y|x)dy / ye U dy

E(Y?X = x) — [E(Y|X = X))

oo}
/ e U dy — (14 x)?

- -1

14+ x
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but why is it interesting?

o conditional variance does not depend on x, but does that mean it is equal to the unconditional
i ?
variance?

oo y
fv(y) = / fx,y(x,y)dx = /efydx = ye”
0

—00
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but why is it interesting?

o conditional variance does not depend on x, but does that mean it is equal to the unconditional

variance?

oo y
fv(y) = / fxyv(x,y)dx = /efydx = ye”
0

—00

remember: the gamma distribution is given by

f(xlo, B) = L x*teT B,

()™

for 0 <t < oo, a,8>0and Na)=(a—1)
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i ?
variance?

oo y
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remember: the gamma distribution is given by
1 a—1 —%
f(xla, ) = ——=—x""e 7, for

()™
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but why is it interesting?

o conditional variance does not depend on x, but does that mean it is equal to the unconditional
i ?
variance?

oo y
fv(y) = / fxyv(x,y)dx = /efydx = ye”
0

—o0

remember: the gamma distribution is given by

f(xlo,B) = ﬁxade*%, for

for0 < t < oo, a,f>0and Na)=(a—1)!. Hence Y ~ G(e, B), with « =2 and g =1,
implying that var(Y) = 8% = 2.

e even though the conditional variance does not depend on the value of x, knowledge of the latter
considerably reduces the variability of Y

var(Y|[X=x) = ¢ =5 var(Y) = ¢

e we will come back to this point later
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independence

e E[g(Y)|X] is a random variable whose values typically depend on the value of X, unless
independent (X L Y)

o definition: let (X, Y) denote a bivariate random vector with joint pdf/pmf fx v(x,y) and
marginals fx(x) and fy(y), then X and Y are independent if

fx(x)fy (y)

fx,v(x,y)
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independence

e E[g(Y)|X] is a random variable whose values typically depend on the value of X, unless
independent (X L Y)

o definition: let (X, Y) denote a bivariate random vector with joint pdf/pmf fx v(x,y) and
marginals fx(x) and fy(y), then X and Y are independent if

fxy(x,y) = &x(xX)fv(y)

e This immediately implies that fy|x(y|x) = fv(y), since

fx(x) fx(x)

and the knowledge of x does not inform the distribution of Y

fxlyix =x) = Berben)  BOIRDY g
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a note of caution

e two pdfs that differ only a zero-measure set define the same probability distribution for (X, Y).

e so definition may fail to hold on sets with measure zero. But in this case X and Y are still
independent.
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a note of caution

e two pdfs that differ only a zero-measure set define the same probability distribution for (X, Y).

e so definition may fail to hold on sets with measure zero. But in this case X and Y are still
independent.

e to see this, take fx y(x,y) and X y(x, y) equal everywhere except on A for which [, [ dxdy = 0.

o let (X, Y) have pdf fx,v(x,y), (X*, Y*) have pdf £ y(x,y), and B C R?. Then

/B/f(x,y)dxdy = /‘QHAC/f(X,y)dxdy
/BnAc/f*(x,y)dxdy

P((X,Y) € B)
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a note of caution

e two pdfs that differ only a zero-measure set define the same probability distribution for (X, Y).

e so definition may fail to hold on sets with measure zero. But in this case X and Y are still
independent.

e to see this, take fx y(x,y) and X y(x, y) equal everywhere except on A for which [, [ dxdy = 0.

o let (X, Y) have pdf fx,v(x,y), (X*, Y*) have pdf £ y(x,y), and B C R?. Then

//f(X,y)dxdy = /‘BHAC/f(X,y)dxdy

P((X*,Y") € B)

P((X,Y) € B)

o for example, take fx y(x,y) = e~(+¥) with x,y > 0, describing two independent exponential random
variables.

e and take fy (x,y) = fx,v(x, y) except that fg \ (x,y) =0 if x =y in A={(x,x),x > 0}.
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independence

e theorem (CB 4.2.7): let (X, Y) be a bivariate random vector with joint pdf f(x,y). Then X and
Y are independent if, and only if, there exist functions g(x) and h(y) such that, for every x € R
and y € R,

fix,y) = &x)h(y)
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e theorem (CB 4.2.7): let (X, Y) be a bivariate random vector with joint pdf f(x,y). Then X and
Y are independent if, and only if, there exist functions g(x) and h(y) such that, for every x € R
and y € R,

fix,y) = &x)h(y)

e proof (=): trivial setting g(x) = fx(x) and h(y) = fy(y).
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independence

e proof («<=) (cont'd): the marginals are given by
A0 = [ eh)dy = g0

vy = [ T g(0h(y)dx = h(y)e
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independence

o proof (<) (cont’d): the marginals are given by

600 = [ etanndy = g0
f) = [ ebannax = ho)e
4
fix,y) = g()hly) = g(x)h(y)ed = fx(x)fr(y)
establishing the desired result. ]
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independence

o proof (<) (cont’d): the marginals are given by

600 = [ etanndy = g0
f) = [ ebannax = ho)e
4
fix,y) = g()hly) = g(x)h(y)ed = fx(x)fr(y)
establishing the desired result. ]

o example: Consider f(x,y) = ﬁxzy“e_}’_% with x,y > 0 and

2 _—x/2 1 A4A_—y
g(x) = x“e x>0 and h(y) = 3e2) € y>0
0 x<0 0 y <0

by theorem above, it follows immediately that X and Y are independent.
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independence and support of the joint pdf

e the support set matters: independence can be ruled out in simple cases.
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o denote the support of the marginals as A = {x : fx(x) > 0} and B = {y : fy(y) > 0}
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independence and support of the joint pdf

e the support set matters: independence can be ruled out in simple cases.

o denote the support of the marginals as A = {x : fx(x) > 0} and B = {y : fy(y) > 0}

e if X and Y independent, then f(x,y) = fx(x)fy(y) > 0 on the set {(x,y) : x € A,y € B}
— define Ax B={(x,y) : x € A,y € B}, denoted cross-product set
— if the set {(x,y) : f(x,y) > 0} is not a cross-product, X and Y cannot be independent.

— in one of the examples above, we have support set 0 < x < y < 00, so not only 0 < x,y < oo but
also x < y, so not independent.
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independence and support of the joint pdf

o theorem (CB 4.2.10): let X and Y be independent variables

(i) forany ACRand BCR,P(X € A, Y € B) =P(X € A)P(Y € B). That is, the events {X € A}
and {Y € B} are independent

(ii) let g(x) be a function of x and h(y) be a function of y. Then
E(g(X)h(Y)) = E(g(X))E(h(Y))
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e proof (ii): Notice that
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e proof (ii): Notice that

E(g(X)h(Y))
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independence and support of the joint pdf

e proof (i): Set g(X) = 1(x € A), h(Y) = 1(y € B).
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independence and support of the joint pdf

e proof (i): Set g(X) = 1(x € A), h(Y) = 1(y € B). Notice that
E[l(xe€ A)] = /jo TZa(x)fx(x)dx = /Afx(x)dx = P(X e€A)

Bipes) = [ T Zo()fe(y)dy = / f(y)dy = B(Y € B)
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independence and support of the joint pdf

« proof (i): Set g(X) = 1(x € A), h(Y) = 1(y € B). Notice that
E[l(x € A)] = /::IA(x)fX(x)dx — /fx(x)dx — B(X €A
Blyed) = [ Zmrmdy = A = By es)
E[Zas(x,y)] = / / Tas(%,y)Fe(x)fr (y) dx dy

= //fx(x Yy(y)dxdy = P(X €AY € B)
BJA

and apply (ii).
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independence and moment generating functions

o theorem (CB 4.2.12): let X and Y be independent random variables with moment generating
functions Mx(t) and My (t). Then the mgf of Z=X + Y is

Mz(t) = Mx(t)/\/’y(t)
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independence and moment generating functions

o theorem (CB 4.2.12): let X and Y be independent random variables with moment generating
functions Mx(t) and My (t). Then the mgf of Z=X + Y is

Mz(t) = Mx(t)/\/’y(t)

e proof:

Mz(t) = E(etz) - E(e“””) - (]Eefx) (]Ee”) = Mx(t)My(t)
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independence and support of the joint pdf

o example/corollary (CB 4.2.14): let X ~ N(u,c?) and Y ~ N(v,7?), independent. Then
Z=X+Y ~N(u+7v,0>+713).
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Mx(t) _ e,u,t+o'2t2/2

My(t) = Ryt

28 / 80



independence and support of the joint pdf

o example/corollary (CB 4.2.14): let X ~ N(u,c?) and Y ~ N(v,7?), independent. Then
Z=X+Y ~N(u+7v,0>+713).

e proof: X and Y have mgf representations

Mx(t) — e,u,t+o'2t2/2
MY(t) — e'yt+7-2t2/2
then
Mz(t) _ e(u+’y)t+(oz+7—2)t2/2
which is the mgf of a normal random variable with mean p 4 v and variance o2 4 72 ]

28 / 80



Contents

3. Bivariate transformations

28 / 80



discrete random vectors

e let (X, Y) be a bivariate random vector with known probability distribution.
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discrete random vectors

e let (X, Y) be a bivariate random vector with known probability distribution.

o Consider a new bivariate random vector (U, V) such that U = g1(X, Y) and V = g»(X,Y)
- (U,V)eB& (X, Y)eA A={(xy): (g1(x,y),8(x,y)) € B}
- P((U,V) € B) =P((X,Y) € A)

— keeping track of the support: from Qx y = {(x,y) : fx v(x,y) > 0} to
Quyv = {(u,v): u=gi(x,y), v=ga(x,y) for some (x,y) € Qx vy}
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discrete random vectors

e let (X, Y) be a bivariate random vector with known probability distribution.

o Consider a new bivariate random vector (U, V) such that U = g1(X, Y) and V = g»(X,Y)

(U,V)eB& (X,Y)e A A={(xy): (g1(x,y),8(x,y)) € B}

- P((U,V) € B) =P((X,Y) € A)

keeping track of the support: from Qx vy = {(x,y) : fx,y(x,y) > 0} to
Quyv = {(u,v): u=gi(x,y), v=ga(x,y) for some (x,y) € Qx vy}

— In the discrete case,

fv(uy) = BU=uV=v) = P((X.V)e{?))
= X fyxy)
(x)ea™)

where Q¥ = {(x,y) € Qx,y : g1(x, ¥) = u,g2(x,y) = v}.
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sum of Poisson variables
example (CB 4.3.1): let X and Y be independent Poisson random variables with joint pmf given by
fx,v(x,y) et e}# alsolet U=X+Yand V=Y.

Y

o the support of the Poisson is Qx,y = {(x,y) : x € N,y € N}

o then Quv ={(u,v): v=0,1,2,... andu=v,v+1,v4+2...}
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sum of Poisson variables

example (CB 4.3.1): let X and Y be independent Poisson random variables with joint pmf given by

fx,v(x,y) et e}# alsolet U=X+ Y and V=Y.

= X
o the support of the Poisson is Qx,y = {(x,y) : x € N,y € N}
o then Quv ={(u,v): v=0,1,2,... andu=v,v+1,v4+2...}
° Qg(uv,)/ consists of only the single point (u — v, v) and

—0pu—v _—A\v
fuv(u,v) = fxy(u—v,v) = e 0 e A

(u—=v)l v
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example (CB 4.3.1): let X and Y be independent Poisson random variables with joint pmf given by
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= x!
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sum of Poisson variables
example (CB 4.3.1): let X and Y be independent Poisson random variables with joint pmf given by
fx,v(x,y) = et e}# alsolet U=X+Yand V=Y.

x!

o the support of the Poisson is Qx,y = {(x,y) : x € N,y € N}

then Quv ={(u,v): v=0,1,2,... andu=v,v+1,v+2...}

Qg(uv,)/ consists of only the single point (u — v, v) and
—0 pu—v —A\V
e "0 e '\
e

o theorem/application: X ~P(6), Y ~P(A)and X LY = X+ Y ~P(0+ \)

u efeeufv ef)\)\v
— (u=v)! V!

fu(u) =

v
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sum of Poisson variables
example (CB 4.3.1): let X and Y be independent Poisson random variables with joint pmf given by
fx,v(x,y) = et e}# alsolet U=X+Yand V=Y.

x!

o the support of the Poisson is Qx,y = {(x,y) : x € N,y € N}

then Quv ={(u,v): v=0,1,2,... andu=v,v+1,v+2...}

Q") consists of only the single point (u — v,v) and

6799U7v efk)\v

fuv(u,v) = fxy(u—v,v) = WT

o theorem/application: X ~P(6), Y ~P(A)and X LY = X+ Y ~P(0+ \)

u —Opgu—v —Ayv u u—vyv
fu(u) _ 0 e A _ e,(9+/\)2 0 A

e
—~ (u—v)! V! vi(u—v)!

1% v=0
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sum of Poisson variables

example (CB 4.3.1): let X and Y be independent Poisson random variables with joint pmf given by

e %% e M\

fx,v(x,y) = T alsolet U=X+Yand V=Y.
o the support of the Poisson is Qx,y = {(x,y) : x € N,y € N}
o then Quv ={(u,v): v=0,1,2,... andu=v,v+1,v4+2...}
° Qg(uv,)/ consists of only the single point (u — v, v) and

6799U7v efk)\v

fuv(u,v) = fxy(u—v,v) = WT

o theorem/application: X ~P(6), Y ~P(A)and X LY = X+ Y ~P(0+ \)

u

—Opu—v _—Ay\Vv u u—vyv
fu(u) _ Ze 0 e A _ e,(9+/\)2 0 A

—(u—v) v

—(64+A) _u
e u u—v v
- (e

v=0

vi(u—v)!

30/ 80



sum of Poisson variables

example (CB 4.3.1): let X and Y be independent Poisson random variables with joint pmf given by

x,v(x,y) el e}# alsolet U=X+Y and V=Y.

= x!
o the support of the Poisson is Qx,y = {(x,y) : x € N,y € N}
o then Quv ={(u,v): v=0,1,2,... andu=v,v+1,v4+2...}
° Qg(uv,)/ consists of only the single point (u — v, v) and

6799U7v efk)\v

fuv(u,v) = fxy(u—v,v) = WT

o theorem/application: X ~P(6), Y ~P(A)and X LY = X+ Y ~P(0+ \)

u —Opu—v _—Ay\Vv u u—vyv
o e 0 e A _ —(6+X) 0 A
fulu) = Z (u=v)I V! - ¢ Z vi(u—v)!
v=0 v=0
—(6+X) U —(6+X)
e u u—vyv . e u
= " ZO <V)9 o= (0
n—k .n

binomial theorem is used in the last equality: (x +y)" = Y7 _ (})x"*y".
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continuous random vector

e let X and Y be continuous random variables with joint pdf fx y(x,y).

e as before, the support set Qx.v = {(x,y) : fx,v(x,y) > 0} maps into

QU»V = {(U, V) : U:gl(X,y), V:g2(x7y) for some (va)GQXVY}
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continuous random vector

e let X and Y be continuous random variables with joint pdf fx y(x,y).

as before, the support set Qx,v = {(x,y) : fx,v(x,y) > 0} maps into

QU»V = {(U, V) : U:gl(X,y), V:g2(x7y) for some (va)EQXVY}

e for now, assume that transformation g : Qx vy — Qu,v is bijective: for each (u,v) € Qu v there is
only one pair (x,y) € Qx.y.

we can solve the inverse transformation x = hi(u, v) and y = h2(u, v).
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continuous random vector

o theorem (CB page 158): the pdf of (U, V) is given by

fU7V(U, V) = fX»Y(hl(u7 V)7h2(ua V)) : |J|
where J is the Jacobian of the transformation
Ox  Ox Ox 9 ox 0
J = ‘3 &':a*a*y*a*a*y
5 o u Ov v ou

x = hi(u,v), y = h2(u,v) and | - | is the determinant.
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continuous random vector

o theorem (CB page 158): the pdf of (U, V) is given by

fU7V(U, V) = fX»Y(hl(u7 V)7h2(ua V)) : |J|
where J is the Jacobian of the transformation
Ox  Ox Ox 9 ox 0
J = ‘3 &':a*a*y*a*a*y
5 o u Ov v ou

x = hi(u,v), y = h2(u,v) and | - | is the determinant.

o the term |J| gives a "magnification factor" for area in going from u-v coordinates to x-y
coordinates, just like in the univariate case.
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continuous random vector

o theorem (CB page 158): the pdf of (U, V) is given by

fU7V(U, V) = fX»Y(hl(u7 V)7h2(ua V)) : |J|
where J is the Jacobian of the transformation
Ox  Ox Ox 9 ox 0
J = ‘3 &':a*a*y*a*a*y
5 o u Ov v ou

x = hi(u,v), y = h2(u,v) and | - | is the determinant.

o the term |J| gives a "magnification factor" for area in going from u-v coordinates to x-y
coordinates, just like in the univariate case.

e intuition for proof: draw rectangles in both coordinates and compute equivalent areas accounting
for magnification.
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product of betas

o example (CB 4.3.3): we want to find the distribution of the product of independent betas
X ~B(a,B) and Y ~ B(a + B,7).
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product of betas

o example (CB 4.3.3): we want to find the distribution of the product of independent betas
X ~B(a,B) and Y ~ B(a + B,7).
e each B(a, 3) distribution is given by

r(a + ﬁ) a—1

— X _x)?
o) 79

f(xla,B) =

with 0 < x < 1.
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product of betas

o example (CB 4.3.3): we want to find the distribution of the product of independent betas

X ~B(a,) and Y ~ B(a + £,7).

e each B(a, 3) distribution is given by

_ r(a+/8) a—1 -1
f(xla, B) = WX (1—x)ﬁ

with 0 < x < 1. So the joint distribution of X and Y is

Mo+ p+7) Xaﬂ(l _ X)ﬁﬂyaﬂf—l(l _ y)~,71

B ) = )
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product

of betas

example (CB 4.3.3): we want to find the distribution of the product of independent betas
X ~B(a,B) and Y ~ B(a + B,7).

each B(a, 8) distribution is given by

_ r(a+ﬁ) a—1 -1
f(xla, B) = WX (1—X)B

with 0 < x < 1. So the joint distribution of X and Y is

Bor(xy) = HostEeE T 1 =Pty gy

we really don't care about V/, but we choose one such that the mapping is bijective: let U = XY

and V = X, then Quv ={(u,v): 0<u<v<1}

then we obtain the marginal for U to get the final answer.
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product of betas

fU,V(U, V) = )‘)(7\/(V7 U/V) %E,am
= el 0/ [0(-u/v?) ~ 11/

1
= -f
, x,v(v,u/v)
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product of betas

fU,V(U7 V) = )‘)(7\/(V7 u/v) a E _ aa

= fx,y(v,u/v)’0(—u/v2)—1(1/v)}
= %fx)y(v,u/v)

= Hrrty e (=)
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product of betas

fx,y(v,u/v) %5y " Budv

f.v (v, u/v) [0(—u/v?) — 1(1/v)|
% fx,y(v,u/v)

T4 849) aay sa (oot () uyoet
om0 ) (-7)

ey (0000
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marginal is also beta

e Taking the marginal for U,

) = [ vty

u
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marginal is also beta

o Taking the marginal for U,
1
fU(u) = / fu,\/(u, V) dv

= ooy G T )T e
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marginal is also beta

o Taking the marginal for U,

) = [ vty

u

T+ B+7) aa [fru p-1 -1y
= (a)r(ﬂ)r(z)“ /U(V*”) (1-7) e

r
MNa+pB8+7) ua71(1 _ u),8+'yfl
F()r(B)r(v)

)R e
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marginal is also beta

o Taking the marginal for U,
1
fulu) = / fu,v(u, v)dv
1 B—1 -1
_ Mo+ B8+7) ua71/ (E,u) (1,E)W Uy

F(a)r(B)r(vy) v v v2
_ r(a + 6+ ’Y) ua71(1 _ u),8+'yfl
M) (B)F ()

« / ({—_)ﬁ (11_ —/) A=

1
= w ua71(1 _ u)ﬁ*"/*l/ 23*1(1 _ 2)771 dz
0

F(e)r (B ()
defining
_ufv—u _ u
z = 1—u = dz = 7mdv
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marginal is also beta

® SO
_ M@+ B4 a1y i1 [T syt
fU(U) = WU (1 U) AZ (1 Z) dz
_rBrm
r(B+v)
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marginal is also beta

® SO
_ Ma+B+7) o piv—1 [ p-1 -
O = g ¢ e
_ferx
r(B+~)
| @S aay e .
= I'(a)l'(ﬁ—l—’y)u (1—u)”™ U~B(a,8+7)

o where the last identity comes from recognizing the integrand as the kernel of a Beta pdf and using
CB 3.3.17.
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sum and difference of standard normals

e example (CB 4.3.4): let X ~ N(0,1) and Y ~ N(0,1) be independent, then U = X + Y and
V = X — Y are also normal random variables
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sum and difference of standard normals

e example (CB 4.3.4): let X ~ N(0,1) and Y ~ N(0,1) be independent, then U = X + Y and
V = X — Y are also normal random variables

+ — 1 1 11
fuv(uv) = &’Y<U2V’U2V>‘§(_§>_§§’
1 u+v u—v

- Efx’y( 2 2 )
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sum and difference of standard normals

e example (CB 4.3.4): let X ~ N(0,1) and Y ~ N(0,1) be independent, then U = X + Y and
V = X — Y are also normal random variables

ut+v u—vy |1 1 11
vluy) = o (S50 5 )‘5 (‘5) "2 5’
_ lf (u+v u— v)
T2 T2 2
11 e wev?
T 22°¢ €
1 _ u2+2uv+v2 _ u? —2uv+v2
= — e 8 8
47
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sum and difference of standard normals

e example (CB 4.3.4): let X ~ N(0,1) and Y ~ N(0,1) be independent, then U = X + Y and
V = X — Y are also normal random variables

ut+v u—vy |1 1 11
i) = o (S5 )‘5(‘5)‘55’
. lf (u+v ufv)
T2 T2 2
_ 11 _% _(U_BV)Z
T 22°¢ €
1 _Prawn® 22w
= — e 8 8
47
1 _2 _.2
pry — e 4 e 4
47

- (et (ar)
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sum and difference of standard normals

e example (CB 4.3.4): let X ~ N(0,1) and Y ~ N(0,1) be independent, then U = X + Y and
V = X — Y are also normal random variables

ut+v u—vy |1 1 11
e = o (2 () -4
vy (v v) *Y\T2 2 ‘2(2) 22’
_ lf (u+v ufv)
-2 T2
11 _(u+8v)2 _(u_sv)z
T 22°¢ €
1 _ u2+2§rv+v2 _ L12728uv+v2
= Ee
1 u? v
= 4fe*Te*T
e
(ma ) (ma)
— —_— e 4 _— e 4
271\@ 271'\@

e U~ N(0,2) and V ~ N(0,2) are also independent (it actually holds as long as same variance)
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independence

e there is a much simpler, but very important, situation in which the new variables U and V are
independent

e theorem (CB 4.3.5): let X and Y be independent random variables, then U = g(X) and
V = h(Y) are also independent.
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independence

e there is a much simpler, but very important, situation in which the new variables U and V are
independent

e theorem (CB 4.3.5): let X and Y be independent random variables, then U = g(X) and
V = h(Y) are also independent.

e proof: consider the continuous case and define Q, = {x: g(x) < wu} and Q, ={y : h(y) < v},

then
Fuv(u,v) = PU<uV<v)
= P(XcEQ,YeE)
= P(Xe€Q)P(Y €Q)
o2
fu’\/(u, V) = m FU,\/(U7 V)
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independence

e there is a much simpler, but very important, situation in which the new variables U and V are
independent

e theorem (CB 4.3.5): let X and Y be independent random variables, then U = g(X) and
V = h(Y) are also independent.

e proof: consider the continuous case and define Q, = {x: g(x) < wu} and Q, ={y : h(y) < v},
then

Fu,v(u,v) P(U<u,V<v)
P(X € Q,,Y €Q,)
= P(Xe€Q)P(Y €Q)

82
duay oV ()

. (d‘iu P(X € Qu)) (dd—v P(Y € Qv)>

the first term is a function only of u and the second term is a function only of v ]

fu’\/(u, V)
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find a partition if necessary

e in some situations of interest the transformation is not bijective...

e find a partition Ao, A1, ..., A of Qx,y, for which the set Ag is such that ]P’((X, Y)e Ao) =0,
whereas (U, V) = (g1(X, Y),g2(X, Y)) is one-to-one from A; to Qu,v for each i =1,... k
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find a partition if necessary

e in some situations of interest the transformation is not bijective...

e find a partition Ao, A1, ..., A of Qx,y, for which the set Ag is such that ]P’((X, Y)e Ao) =0,
whereas (U, V) = (g1(X, Y),g2(X, Y)) is one-to-one from A; to Qu,v for each i =1,... k

e Then...
K

fuv(u,v) = Z fx,v (mi(u, v), hai(u, v)) | Ji]

i=1

just like in the univariate case.
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ratio of independent normal variables

example: let U= X/Y and V = |Y|, with X ~ N(0,1) 1L Y ~ N(0,1)

Qu,v ={(u,v): v>0}

° AO:{(Xv.y) : y:O}a A1:{(X7y): y>0}7 A2:{(va): y<0}
o hi(u,v)=uv, har(u,v)=v = |h|=|v-1—u-0]=|v|
o hia(u,v) = —uv, hor(u,v) = —v = |hL|=|(-v) - (-1)+u-0| = |v|

e Using the result above,

1w —v 1 —(—v
fuv(u,v) = %e /2 2/2|V|—|—%e (—u)?/2 —( )2/2|V|
= (v/m) e (/2 —o<u<oo 0O0<v<oo
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ratio of independent normal variables

o the distribution of the ratio of independent normals is the marginal of U:

/OO(V/W) 67(U2+1)V2/2 dv
0

1 o
_ e 2(14+u?)/2 dz

fu(u)

27 Jo

where we used z = v = dz = 2vdv.
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ratio of independent normal variables

o the distribution of the ratio of independent normals is the marginal of U:

/OO(V/W) ef(u2+1)v2/2 dv
0

1 o
_ e z(1+u?)/2 dz

fu(u)

27 Jo

where we used z = v? = dz = 2vdv. By noticing that the integrand is kernel of exponential pdf

with 3 = 25, we get that

/oo e F 24, — 2
o 14+ w2
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ratio of independent normal variables

o the distribution of the ratio of independent normals is the marginal of U:

/OO(V/W) ef(u2+1)v2/2 dv
0

1 o
_ e z(1+u?)/2 dz

fu(u)

27 Jo

where we used z = v? = dz = 2vdv. By noticing that the integrand is kernel of exponential pdf

with 3 = 25, we get that
/oo e~20H)/2q, _ 2
o 14+ w2
and therefore
1 2 1
f = — = —o<u<
u(u) 21 1+ 12 (1 + ?) oSS

which is a Cauchy distribution. (intuitive, right?...)
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Contents

4. Hierarchical models, mixtures, and a LIE
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hierarchy

e we have so far seen probability models in which a random variable has a single distribution,
possibly depending on some fixed parameters
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hierarchy

e we have so far seen probability models in which a random variable has a single distribution,
possibly depending on some fixed parameters

e however. .. it is sometimes useful to think about distributions with random parameters that
follow themselves some known distribution

o advantage the main benefit is to handle intricate structures by means of a sequence of relatively
simple models in a hierarchy

e classic example: how many eggs will survive on average if an insect lays a large number of eggs,
each surviving with probability p?
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binomial-Poisson hierarchy

o let's make some assumptions. ..

o large number of eggs is a random variable N ~ Poisson(\)
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o let's make some assumptions. ..
o large number of eggs is a random variable N ~ Poisson(\)

e each egg's survival is independent and hence we may model their survival as Bernoulli trials
X|N ~ Bin(N, p)

P(X=x) = > P(X=x,N=n)
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binomial-Poisson hierarchy

o let's make some assumptions. ..
o large number of eggs is a random variable N ~ Poisson(\)

e each egg's survival is independent and hence we may model their survival as Bernoulli trials
X|N ~ Bin(N, p)

P(X=x) = > P(X=x,N=n)=)» P(X=x|N=n)P(N=n)
- E()pecoreyt
— ) Z eIt
e (p)" 5~ [ = A"
x! e~ (n—x)!
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binomial-Poisson hierarchy

o let's make some assumptions. ..
o large number of eggs is a random variable N ~ Poisson(\)

e each egg's survival is independent and hence we may model their survival as Bernoulli trials
X|N ~ Bin(N, p)

P(X=x) = > P(X=x,N=n)=)» P(X=x|N=n)P(N=n)
S (e
— ) Z eIt

e ) R [ - PN e*A(Ap)Xi[(l—pmt
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binomial-Poisson hierarchy

o let's make some assumptions. ..
o large number of eggs is a random variable N ~ Poisson(\)

e each egg's survival is independent and hence we may model their survival as Bernoulli trials
X|N ~ Bin(N, p)

P(X=x) = iP(X =x,N=n)= iIF’(X =x|N = n)P(N = n)
= 2 (f)paar
_/\ e )\n X
= e () Z IX,( -p)"
- Ap)* e _ A]"x - Ap)* & 1— A t
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binomial-Poisson hierarchy

o let's make some assumptions. ..
o large number of eggs is a random variable N ~ Poisson(\)

e each egg's survival is independent and hence we may model their survival as Bernoulli trials
X|N ~ Bin(N, p)

PX=x) = SPX=xN=n) =3 B(X=xIN=n)EN=n)

ad —A\n
S (o

_/\ . )\n X
= (Ap) Z IXI( _p) nl

,)\)\ x o0 _ )\nfx 7)\)\ x OO 1_ )\t
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binomial-Poisson hierarchy

o let's make some assumptions. ..

o large number of eggs is a random variable N ~ Poisson(\)

e each egg's survival is independent and hence we may model their survival as Bernoulli trials

X|N ~ Bin(N, p)

P(X = x)

iP(X:X,N:n)z
n=0

> P(X =x|N =n)P(N = n)

oo —A\n
S
_/\ . )\n X

(Ap)* Z 'xl( —p) n!
7)\)\)<°° — p)A]"X “2p) o= [(1 — p)A]
e )((!p) : [ (nf)xgl e i;p) ;[( t!p)]
we(l—mA ()‘p):%p = X ~ Poisson(Ap)
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law of iterated expectations (LIE)

e theorem: if X and Y are any two random variables, then
E(X) = E[E(X|Y)]

as long as the expectations exist.
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o theorem: if X and Y are any two random variables, then
E(X) = E[E(X|Y)]
as long as the expectations exist.

e proof: fx,y(x,y) = fx;v(x|y)fy(y) by definition, and hence

E(X) = / / xfx,v(x,y)dxdy
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law of iterated expectations (LIE)

o theorem: if X and Y are any two random variables, then
E(X) = E[E(X|Y)]
as long as the expectations exist.

e proof: fx,y(x,y) = fx;v(x|y)fy(y) by definition, and hence

E(X) / / xfx,v(x,y)dxdy

[m {[wale(X|Y)dX] fv(y) dy

- / T E(XIy)f(y) dy = E[E(X]Y)] u

e binomial-Poisson hierarchy: E(X) = E[E(X|N)] = E(Np) = Ap
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mixture of distributions

e definition: a random variable X has a mixture distribution if the distribution of X depends on a
quantity that also has a distribution

e any distribution arising from a hierarchy meets this definition
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e example: Poisson(Ap) is a mixture distribution as it results from the combination of a binomial
distribution Bin(N, p) and N ~ Poisson(\)

45 / 80



mixture

of distributions

definition: a random variable X has a mixture distribution if the distribution of X depends on a
quantity that also has a distribution

any distribution arising from a hierarchy meets this definition

example: Poisson(Ap) is a mixture distribution as it results from the combination of a binomial
distribution Bin(N, p) and N ~ Poisson(\)

example: there is nothing to stop the hierarchy at two layers of structure there are now a large
number of mother insects from which we draw one at random

X|N ~ Bin(N, p)

N|A ~ Poisson())

N ~ Exp(0)
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noncentral chi-squared distribution

e apart from aiding understanding, the hierarchical structure also helps with some moment
calculations

e example: let X have a noncentral chi-squared distribution with p degrees of freedom and
noncentrality parameter )\, then
Xp/2+k 167X )\k67A

(xhp) = > o
£ T(p/2+ k)2°/27k k]
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noncentral chi-squared distribution

e apart from aiding understanding, the hierarchical structure also helps with some moment
calculations

e example: let X have a noncentral chi-squared distribution with p degrees of freedom and
noncentrality parameter )\, then

/2+k 1 —x? )\kefk

- e
fx(x|A, p) Z; F(p/2 + k)2°/2tk Kkl

it is not so messy to compute E(X) if one realizes that X|K ~ X,2,/2+K and K ~ Poisson(\)

E(X) = E[E(X|K)] = E(p+2K) = p+2x
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conditional variance identity

o theorem: var(X) = E[var(X|Y)] + var[E(X|Y)]
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conditional variance identity

o theorem: var(X) = E[var(X|Y)] + var[E(X|Y)]
e proof:

var(X) E[X — E(X)]?
E[X — E(X|Y) +E(X|Y) — E(X)]?
E[X — E(X|Y)]* + E[E(X|Y) — E(X)]?

+ 2E{[X — E(X|Y)][E(X|Y) — E(X)]}
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conditional variance identity

o theorem: var(X) = E[var(X|Y)] + var[E(X|Y)]
e proof:
var(X) = E[X —E(X)]?
= E[X —E(X]Y)+E(X|Y) - E(X)]?
= E[X - E(X|Y)P +E[E(X]Y) - EX)]?
+2E{[X — E(X|Y)I[E(X|Y) — E(X)]}
= E(E{[X —EX|Y)P|Y}) + var[E(X|Y)]
+ 2E (E{[X - E(X|Y)][E(X|Y) — E(X)]|Y'})
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conditional variance identity

o theorem: var(X) = E[var(X|Y)] + var[E(X|Y)]
e proof:

var(X) = E[X —E(X)]?
= E[X —E(X|Y)+E(X|Y) - E(X)]?
= E[X - E(X|Y) +E[E(X]Y) — E(X)]?
+2E{[X — E(X|Y)][E(X]Y) — E(X)]}
= E(E{[X —EX|Y)P|Y}) + var[E(X|Y)]
+ 2E (E{[X — E(X|V)][E(X]Y) - E(X)]|Y})
= E[var(X|Y)] + var[E(X|Y)]
+2E{[E(X|Y) — E(XIV)][E(X]Y) — E(X)]}
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conditional variance identity

o theorem: var(X) = E[var(X|Y)] + var[E(X|Y)]

e proof:

var(X)

E[X — B(X)]?
E[X — E(X|Y) + E(X|Y) — E(X)]?
E[X — E(X|Y)] + E[E(X|Y) — E(X)]?

+2E{[X — E(X|Y)][E(X]Y) — E(X)]}
E (E{[X —E(X|Y)*|Y}) + var[E(X|Y)]

+ 2E (E{[X — E(X|V)][E(X]Y) - E(X)]|Y})
E[var(X|Y)] + var[E(X|Y)]

+ 2E{[E(X]Y) — E(X|Y)][E(X|Y) — E(X)]}
E [var(X|Y)] + var[E(X|Y)] [ ]

47 / 80



Contents

5. Covariance and correlation
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how to gauge the strength of a relationship?

e let X and Y measure the weight and volume of a sample of water
— if we gauge the pair (X, Y) in several samples and plot them

— then data points should fall on a straight line in the absence of measurement errors

e let X and Y measure the body weight and height of a person
— if we gauge the pair (X, Y) in several samples and plot them

— then data points should also exhibit a upward trend, though not exactly a straight line

48 / 80



definitions

e the covariance between X and Y is
cov(X,Y) = E[(X —px)(Y —py)] = E(XY)— pxpy,

with pux = E(X) and py = E(Y),
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definitions

e the covariance between X and Y is
cov(X,Y) = E[(X —m)(Y —py)] =

= E(XY) — pxpy,
with px = E(X) and py = E(Y'), whereas the correlation is

corr(X,Y) = E(M M)

X, Y
o p~ cov(X,Y),

OxX0y

with ox = y/var(X) and oy = /var(Y)
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definitions

e the covariance between X and Y is

cov(X,Y) = IE[(X — px)(Y — My)] = E(XY) — uxpy,
with px = E(X) and py = E(Y'), whereas the correlation is

corr(X,Y) = E(M M) —

cov(X,Y),
gx gy

OxX0y

with ox = y/var(X) and oy = /var(Y)

o independence (CB 4.5.5): if X and Y are independent random variables then
cov(X,Y)=corr(X,Y)=0
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counterexamples

Independence implies E(XY) = E(X)E(Y), but not vice-versa.
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counterexamples

Independence implies E(XY) = E(X)E(Y), but not vice-versa.

1. let X be -1 or 1 with probability 0.5. Let Y be 0 if X = —1. If X =1, Y is randomly -1 or 1 with
probability 0.5. X and Y are not independent

— however. . .

E(XY)

~1.0-P(X=-1)+1-1.P(X=1,Y =1)
+1--1-P(X=1,Y = —1)
0

and E(X) = E(Y) = 0.
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1. let X be -1 or 1 with probability 0.5. Let Y be 0 if X = —1. If X =1, Y is randomly -1 or 1 with
probability 0.5. X and Y are not independent

— however. . .
E(XY) = -1-0-P(X=-1)41-1-P(X=1,Y=1)
+1--1-P(X=1,Y =-1)
= 0

and E(X) = E(Y) = 0.
2. A standard normal distribution is such that E(X) = E(X?®) = 0. Take Y = X2. Then
cov(X,Y) = EXY)-E(X)-E(Y) = 0
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example of a linear relationship

e example: let X ~ U(0,1) 1L Z ~ U(0,1/10) and Y = X + Z.
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example of a linear relationship

e example: let X ~ U(0,1) 1L Z ~ U(0,1/10) and Y = X + Z.
e the joint pdf of (X, Y)is fx,y(x,y) =10for 0 < x <land x <y < x+1/10

— Why? Either do transformations, or think of Y|X =x=x+4+2Z ~ U(x,x + %) Multiplying by this
conditional pdf by the marginal pdf of X yields the pdf above.
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conditional pdf by the marginal pdf of X yields the pdf above.

e then

E(Y) = E(X)+E(Z) = 1/2+1/20 = 11/20
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e example: let X ~ U(0,1) 1L Z ~ U(0,1/10) and Y = X + Z.

e the joint pdf of (X, Y)is fx,y(x,y) =10for 0 < x <land x <y < x+1/10

— Why? Either do transformations, or think of Y|X =x=x+4+2Z ~ U(x,x + %) Multiplying by this
conditional pdf by the marginal pdf of X yields the pdf above.

e then
E(Y) = E(X)+E(Z) = 1/2+1/20 = 11/20
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e the joint pdf of (X, Y)is fx,y(x,y) =10for 0 < x <land x <y < x+1/10
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e the joint pdf of (X, Y)is fx,y(x,y) =10for 0 < x <land x <y < x+1/10

— Why? Either do transformations, or think of Y|X =x=x+4+2Z ~ U(x,x + %) Multiplying by this
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e then
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example of a nonlinear relationship

e example: let X ~ U(—1,1) 1L Z ~ U(0,1/10) and Y = X? + Z, then the joint pdf of (X, Y) is
fv(x,y) =5for -1 < x < land x> <y < x*+1/10,
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example of a nonlinear relationship

e example: let X ~ U(—1,1) 1L Z ~ U(0,1/10) and Y = X? + Z, then the joint pdf of (X, Y) is
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example of a nonlinear relationship

e example: let X ~ U(—1,1) 1L Z ~ U(0,1/10) and Y = X? + Z, then the joint pdf of (X, Y) is
fv(x,y) =5for -1 < x < Land x* < y < x*> 4+ 1/10, with
cov(X,Y) = E(XY)—-E(X)E(Y)
= E[X(X?+2Z)] - E(X)E(X* + 2)
= E(X®) + E(XZ) — E(X)E(X?) — E(X)E(Z)
= E(X3) + E(X)E(Z) — ]E(X)]E(Xz) —E(X)E(Z)
0

given that E(X) = E(X?) = 0 due to the symmetric nature of X
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example of a nonlinear relationship

e example: let X ~ U(—1,1) 1L Z ~ U(0,1/10) and Y = X? + Z, then the joint pdf of (X, Y) is
fv(x,y) =5for -1 < x < Land x* < y < x*> 4+ 1/10, with

cov(X,Y) = E(XY)—E(X)E(Y)
= E[X(X?+2Z)] - E(X)E(X* + 2)
= E(X?) +E(XZ) - E(X)E(X?) — E(X)E(Z)
= E(X?) +E(X)E(Z) - E(X)E(X?) — E(X)E(Z)
0

given that E(X) = E(X?) = 0 due to the symmetric nature of X

e there is a strong dependence between X and Y/, but it is not linear...
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how does it look like?

53 / 80



linear dependence

e theorem (CB 4.5.7): For any random variables X and Y/,
(i) Jeorr(X,Y)| <1

(ii) |eorr(X, Y)| =1 if and only if there exist numbers a # 0 and b such that P(Y = aX + b) = 1, with
a>0if corr(X,Y)>0and a<0if corr(X, Y) <0
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a>0if corr(X,Y)>0and a<0if corr(X, Y) <0

e proof of (i): define h(t) = E[(X — ux)t + (Y — /.Ly)]2
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e theorem (CB 4.5.7): For any random variables X and Y/,
(i) Jeorr(X,Y)| <1

(ii) |eorr(X, Y)| =1 if and only if there exist numbers a # 0 and b such that P(Y = aX + b) = 1, with
a>0if corr(X,Y)>0and a<0if corr(X, Y) <0

e proof of (i): define h(t) = E[(X — ux)t + (Y — /.Ly)]2

h(t) = PE(X — pux)? 4 2tE(X — ux)(Y — py) + E(Y — py)?
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e theorem (CB 4.5.7): For any random variables X and Y/,
(i) Jeorr(X,Y)| <1

(ii) |eorr(X, Y)| =1 if and only if there exist numbers a # 0 and b such that P(Y = aX + b) = 1, with
a>0if corr(X,Y)>0and a<0if corr(X, Y) <0

e proof of (i): define h(t) = E[(X — ux)t + (Y — /.Ly)]2

h(t) = E(X = px)? + 2tE(X — px)(Y — py) + E(Y — py)?
t?0% + 2tcov(X, Y) + 0%

so h(t) > 0, Vt and hence it can have at most one real root, implying a nonpositive discriminant
(remember Bhaskara?),

[2 cov(X, Yﬂ2 —46%02 <0
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linear dependence

o proof of (ii): now, corr(X, Y) = 1 & [2tcov(X, Y)|? — 4t20%0% =0, i.e., h(t) has a single root.
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o proof of (ii): now, corr(X, Y) = 1 & [2tcov(X, Y)|? — 4t20%0% =0, i.e., h(t) has a single root.
Given that [(X — pux)t+ (Y — ,uy)}2 >0 for all t, h(t) = 0 if and only if
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linear dependence

o proof of (ii): now, corr(X, Y) = 1 & [2tcov(X, Y)|? — 4t20%0% =0, i.e., h(t) has a single root.
Given that [(X — pux)t+ (Y — ,uy)}2 >0 for all t, h(t) = 0 if and only if

1

P ([(X = )t + (Y = uy)]* = 0)

I <=
—

P((X =)t + (Y — py) = 0)
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X
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linear dependence

o proof of (ii): now, corr(X, Y) = 1 & [2tcov(X, Y)|? — 4t20%0% =0, i.e., h(t) has a single root.
Given that [(X — pux)t+ (Y — ,uy)}2 >0 for all t, h(t) = 0 if and only if

2
P([(X—px)t+(Y—uy)] :0) = 1
3
P(X = px)t+ (Y —py)=0) = 1
which is equivalent to P(Y = aX + b) = 1 with a = —t = “CY) and b = puxt + py ]
X

o we will see that the Cauchy-Schwartz inequality considerably shortens the proof above
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variance decomposition
e theorem (CB 4.5.6): if X and Y are any two random variables, and a and b are any two

constants, then
var(aX + bY) = a°var(X) 4+ b*var(Y) + 2abcov(X, Y)
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e theorem (CB 4.5.6): if X and Y are any two random variables, and a and b are any two
constants, then
var(aX + bY) = a°var(X) 4+ b*var(Y) + 2abcov(X, Y)

e proof: it follows from E(aX + bY) = aux + buy that
E[(aX + bY) — (apx + buy)]?
= E[a(X — px) + b(Y — py))?
= E[*(X — px)® + B*(Y — py)? +2a(X — px) b(Y — py)]
= &[E(X — pux)?] + B’E[(Y — py)?]
+2abE[(X — ux)(Y — py)]

var(aX + bY)
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e theorem (CB 4.5.6): if X and Y are any two random variables, and a and b are any two
constants, then
var(aX + bY) = a°var(X) 4+ b*var(Y) + 2abcov(X, Y)

e proof: it follows from E(aX + bY) = aux + buy that
E[(aX + bY) — (aux + buy)]2
= E[a(X — px) + b(Y — py))?
= E[*(X — px)® + B*(Y — py)? +2a(X — px) b(Y — py)]
= &[E(X — pux)?] + B’E[(Y — py)?]
+2abE[(X — ux)(Y — py)]
= a?var(X) + b2 var(Y) 4 2abcov(X, Y) |

var(aX + bY)
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variance decomposition

e theorem (CB 4.5.6): if X and Y are any two random variables, and a and b are any two
constants, then
var(aX + bY) = a°var(X) 4+ b*var(Y) + 2abcov(X, Y)

e proof: it follows from E(aX + bY) = aux + buy that
E[(aX + bY) — (aux + buy)]2
= E[a(X — px) + b(Y — py))?
= E[*(X — px)® + B*(Y — py)? +2a(X — px) b(Y — py)]
= &[E(X — pux)?] + B’E[(Y — py)?]
+2abE[(X — ux)(Y — py)]
= a?var(X) + b2 var(Y) 4 2abcov(X, Y) |

var(aX + bY)

o the variation in X + Y is inferior to the sum of the variations in X and Y if cov(X, Y) <0
because large values of X are more likely to occur with small values of Y
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bivariate normal

o definition: the bivariate normal distribution with parameters pux, uy, 0% >0, 02 >0 and |p| < 1

1 1 x—pux\* | (y—wr\®
f S - y— By
X,Y(X7.y) 27T0'X0'Y\/p exp{ 2(1 _ p2) |:< ox ) + ( oy

_2pX—MX Y_MY:|}
gx gy

for —oco < x < o0 and —oo0 < x < o0.
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bivariate normal

o definition: the bivariate normal distribution with parameters pux, uy, 0% >0, 02 >0 and |p| < 1

1 1 x—pux\* | (y—wr\®
f S - y— By
X,Y(X7.y) 27T0'X0'Y\/p exp{ 2(1 _ p2) |:< ox ) + ( oy

_2pX—MX Y_MY:|}
gx gy

for —oco < x < o0 and —oo0 < x < o0.

o the following properties hold (proofs left as exercise):
— corr(X,Y)=p

— X ~ N(ux,0%) and Y ~ N(uy,02)

= XIY ~ N (x 0 2 (Y = py), 03 (1= 7))
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6. Multivariate distributions
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joint, marginal and conditional probabilities

o discrete: the joint pmf of X = (X1,...,X,) C R" is a function fx(x) such that

P(X€A) = > ()

x€A

for any ACR"
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joint, marginal and conditional probabilities

o discrete: the joint pmf of X = (X1,...,X,) C R" is a function fx(x) such that

P(X€A) = > ()

x€A

for any ACR"

e continuous: the joint pdf of X = (Xi,...,X,) C R" is a function fx(x) such that

P(XeA) = /---/f(xl,...,x,,)dxl»»-dx,,
A

for any AC R"
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joint, marginal and conditional probabilities

o discrete: the joint pmf of X = (X1,...,X,) C R" is a function fx(x) such that

P(X€A) = > ()

x€A

for any ACR"
e continuous: the joint pdf of X = (Xi,...,X,) C R" is a function fx(x) such that
P(XeA) = /---/f(xl,...,x,,)dxl»»-dx,,
A
for any AC R"

e expectation:

_ ffooo"'ffooog(x)f (x)dx if continuous
Hlebl = { > xern 8(x) fx(x) . if discrete
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joint, marginal and conditional probabilities

e marginals with respect to a subset of the variables can be obtained integrating with respect to the
other variables

flxa,...,x) = / / f(xty. oy Xn) dxkqr -+ dxp
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joint, marginal and conditional probabilities

e marginals with respect to a subset of the variables can be obtained integrating with respect to the

other variables

o similarly, the conditional pdf is

F(Xk41y - - -5 Xn|X1,

ey XK)

1‘-(X17 .

f(Xl,..
1‘-(X17 ce

oy Xn) AXigr -+ - dxp

. 7Xl")
7X/<)
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example

o example: let

3(,2 2 2 2 .
=(x: X5 + x3 + X, 0<xi<1l,i=1,23,4
f(x1,x2,x3,xa) = { 6( 1t s+ ) o
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example

o example: let

302 02, 2 2 ' _
f(x1,x2,x3,xa) = {4(X1+X2+X3+X4) 0<xi<1,i=1234

0 o.w.

o verify that:
(i) fol fol fol fol f(x1,x2,x3,xa)dx1 dxo dxz dxg = 1
() P(X <1 X< 2% > 1) = 2
(i) fOa,x) =304 +8)+3
(iv) EXiXo = &

xF g g

(v) f(x3,xa|x1,x2) = e e
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multinomial distribution

e Bernoulli trials now have n distinct outcomes, with probabilities p1, ..., p,, common across trials.
X; represents the number of times that the ith outcome happened among m trials.
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multinomial distribution

e Bernoulli trials now have n distinct outcomes, with probabilities p1, ..., p,, common across trials.
X; represents the number of times that the ith outcome happened among m trials.

e example: toss a six-sided dice and let Z be the outcome. The dice is unbalanced and

P(Z = z) = % . Consider now tossing the dice ten times, and X; counts the number of times /

came up.
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multinomial distribution

e Bernoulli trials now have n distinct outcomes, with probabilities p1, ..., p,, common across trials.
X; represents the number of times that the ith outcome happened among m trials.

e example: toss a six-sided dice and let Z be the outcome. The dice is unbalanced and
P(Z = z) = % . Consider now tossing the dice ten times, and X; counts the number of times /
came up. Then X = (X1, X2,..., Xs) has a multinomial distribution with m = 10 trials, n =6

possible outcomes, and

10! 1\’ 72\ /3\' /4\?/5\*/6\"
f0.0.1,2.3.4) = G (ﬁ) (ﬁ) (ﬁ) (E) (ﬁ) (ﬁ)

0.0059
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multinomial distribution

o definition: let n and m denote positive integers, then the discrete random vector
X = (Xi,...,X») has a multinomial distribution with m trials and cell probabilities
0<p1,...,Pn < 1such that 3°7 , pi = 1 if the joint pmf of X is given by

m!

n
— X1 X —
fx(x1,...,xn) = el 2 ceepy! = m!ll

x1!ee xp! paley

Xj
P;
X,'I

for x = (x1,...,xa) such that each integer x; >0 and >_7 , x; =m
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marginal and conditional pmfs of a multinomial

if the discrete random vector X = (X, ..., Xy) is multinomial with m trials and cell probabilities
0<p1,...,pn <1, (you may try to show these properties)

o the marginal of X; is binomial Bin(m, p;)

e the conditional distribution of (Xi,...,Xi—1, Xit1,..., X») given X; = x; is multinomial with
m — x; trials and cell probabilities p; /(1 — pi) for 1 < j#i<n

o there is some negative correlation given that > | Xi = m corr(Xi, X;) = —mpip; for
1<i#j<n
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independence

o definition: let X1,..., X, denote random vectors with joint pdf/pmf fx(x1,...,x,) and marginal
pdf/pmf fx,(x;), then they are mutually independent random vectors if, for every (x1,...,xn),

fx(X17...7Xr,) = fX1(X1)"'an(Xn) = li[fx,(x,')

e we now need to generalize the results we had for independent bivariate distributions
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independence
if X1,...,X, are independent,

(1) let g1,...,gn be real-valued functions such that gi(x;) is a function only of x;.

E[gi(X1) - - gn(Xn)] = H]E[g,-(Xl)]
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independence
if X1,...,X, are independent,

(1) let g1,...,gn be real-valued functions such that gi(x;) is a function only of x;.

E[gi(X1) - - gn(Xn)] = H]E[g,-(Xl)]

(2) let Mx(t), ..., Mx,(t) be the mgfs of X1,...,Xy and Z =3"7 | Xi. Then

Mz(t) = H Mx.(t)
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independence
if X1,...,X, are independent,

(1) let g1,...,gn be real-valued functions such that gi(x;) is a function only of x;.

E[gi(X1) - - gn(Xn)] = H]E[g,-(Xl)]

(2) let Mx(t), ..., Mx,(t) be the mgfs of X1,...,Xy and Z =3"7 | Xi. Then

Mz(t) = H Mx.(t)

(3) let a1,...,an, b1, ..., by be fixed constants and Z = >"" | a;Xi + b;. Then

Mz(t) = (efEbf) f[MX,.(a,-t)
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independence

if X1,...,X, are independent,

(4) Xi,...,Xn are independent if, and only if, there exists functions g;(x;) such that

(X1, yXn) = Hgi(Xi)
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independence

if X1,...,X, are independent,

(4) Xi,...,Xn are independent if, and only if, there exists functions gj(x;) such that

(X1, yXn) = Hgi(Xi)

(5) U1 =g1(X1),..., Uy = gn(Xn) are also mutually independent
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independence and normality

e example (CB 3.6.10): X; ~ N(ui,o?), mutually independent. Let a1, ..., an, b1, ..., b, be fixed
constants. Then

n

Z = Z(a,—X,— +b) ~ N (i(af,uf + bi)azn:a?a,z>
i=1

i=1 i=1

67 / 80



independence and normality

e example (CB 3.6.10): X; ~ N(ui,o?), mutually independent. Let a1, ..., an, b1, ..., b, be fixed
constants. Then

n

Z = Z(an’ +b) ~ N (i(af,uf + bi)azn:a?a,-2>
i=1

i=1 i=1

e proof: the mgf of a normal random variable is M(t) = e tto* /2 Then

Mz(t) = (efzbi)Heu;ait+afa;“t2/2

i=1
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independence and normality

e example (CB 3.6.10): X; ~ N(ui,o?), mutually independent. Let a1, ..., an, b1, ..., b, be fixed
constants. Then

n

Z = Z(a,—X,— +b) ~ N (i(af,uf + bi)azn:a,?a,-2>
i=1

i=1 i=1

e proof: the mgf of a normal random variable is M(t) = e tto* /2 Then

? 222
Mz(t) = (etz b,') H ehidittolart /2
i=1
= etz(aiui+bi)+(2 a?o?)t?/2
which is the mgf of a N (327, (aiwi + bi), 321, a7o7?). =
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multivariate normal

e the pdf of multivariate normal distributions is

1 _ 1 7;)(7 /s—1 —
i) = (27r)n/2|):‘ e 2tmWE T len)

for n-dimensional X. Denote X ~ N(u,X).
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multivariate normal

e the pdf of multivariate normal distributions is

1 _ 1 7;)(7 /s—1 —
i) = (27r)n/2|):‘ e 2tmWE T len)

for n-dimensional X. Denote X ~ N(u,X).

o lemma: let Z ~ N(0,1,) and X = o+ /27, Then X ~ N(y, X).
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multivariate normal

e the pdf of multivariate normal distributions is

1 1 L)y l(x—
K0 = yalEl de BT

for n-dimensional X. Denote X ~ N(u,X).
o lemma: let Z ~ N(0,1,) and X = o+ /27, Then X ~ N(y, X).

e proof: the distribution of Z is

1 1,0,

fz(Z) = WG‘_

and the transformation x = p + /27 has Jacobian |Z\_1/2.
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multivariate normal

e the pdf of multivariate normal distributions is

1 _ 1 7;)(7 ’ 71X7
i) = (27r)n/2|):‘ e 2tmWE T len)

for n-dimensional X. Denote X ~ N(u,X).
o lemma: let Z ~ N(0,1,) and X = o+ /27, Then X ~ N(y, X).

e proof: the distribution of Z is

1 1,0,

fz(Z) = WG‘_

—1/2

and the transformation x = u 4+ X2z has Jacobian |Z|

o lemma: if Y = AX + b, then Y ~ N(Au + b, ATA").
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multivariate normal

e the pdf of multivariate normal distributions is

1 _ 1 7;)(7 ’ 71X7
fx(x) = W'Z‘ 1o - T -

for n-dimensional X. Denote X ~ N(u,X).

lemma: let Z ~ N(0,1,) and X = p+ £¥/2Z. Then X ~ N(p, X).

e proof: the distribution of Z is

1 1,0,

fz(Z) = WG‘_

and the transformation x = p + /27 has Jacobian |Z\_1/2.

o lemma: if Y = AX + b, then Y ~ N(Au + b, ATA").

proof: follows from previous slide.
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multivariate normal
e take a partition X = [X{, X3]’, with X ~ N(u,X) and let
1 Y1 Yi2
K { 2 } an [ Y21 X }

e theorem: Xi and Xz are independent if and only if X120 = 0.
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multivariate normal
e take a partition X = [X{, X3]’, with X ~ N(u,X) and let
1 Y1 Yi2
K { 2 } an [ Y21 X }

e theorem: Xi and Xz are independent if and only if X120 = 0.

e proof (=): this is immediate (independent random variables imply zero correlation)
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multivariate normal
e take a partition X = [X{, X3]’, with X ~ N(u,X) and let
1 Y1 Yi2
K { 2 } an [ Y21 X }

e theorem: Xi and Xz are independent if and only if X120 = 0.

e proof (=): this is immediate (independent random variables imply zero correlation)

o proof («): let X1 = 0 and write
[ Za 0
= (0 )
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multivariate normal
e take a partition X = [X{, X3]’, with X ~ N(u,X) and let

1 Y11 Yo
a { 2 } an [ 21 Yo }
e theorem: Xi and Xz are independent if and only if X120 = 0.

e proof (=): this is immediate (independent random variables imply zero correlation)

o proof («): let X1 = 0 and write

then
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multivariate normal
e take a partition X = [X{, X3]’, with X ~ N(u,X) and let

7 Y T
a { 2 } an [ 21 Yo }

e theorem: Xi and Xz are independent if and only if X120 = 0.

e proof (=): this is immediate (independent random variables imply zero correlation)

o proof («): let X1 = 0 and write

([ Zu 0
P (%)
then
1 1 1 J——1
A = gyl Fee {50 - )

1 1 1 _
= oymaTul Few {—§(X1 — ) Ty (a — ul)}

1 _1 1 e
X(27r)7n2/2|>322| 2 exp {_§(X2 — h2) T (32 — Mz)}
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multivariate normal
e take a partition X = [X{, X3]’, with X ~ N(u,X) and let

7 Y T
a { 2 } an [ 21 Yo }

e theorem: Xi and Xz are independent if and only if X120 = 0.

e proof (=): this is immediate (independent random variables imply zero correlation)

(T 0
P (%)

o proof («): let X1 = 0 and write

then
(x) = o E B expd — 2 (x — ) E N (x — )
X = @ P{ =5 I p
1 _1 1 _
= WEHI 2 exp {—§(X1 — ) T (a — ul)}
1 _1 1 e
X(27r)7n2/2|>322| 2 exp {_§(X2 — h2) T (32 — Mz)}

= fq(xa)- fo(x)
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multivariate normal
e theorem: the conditional distribution of X1|Xz is N (1.2, £11.2) with
prz = g1t T (X — p2)
Y112 Y11+ ):12):;21221
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multivariate normal
e theorem: the conditional distribution of X1|Xz is N (1.2, £11.2) with
prz = g1t T (X — p2)
Y112 Y11+ ):12):;21221

e proof: consider a random vector given by

Xi — 12X 55 Xo B [ SPY v Xl _oa X
Xz |0 I X2 | Xz

which is a linear transformation A of a normal random vector X.
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multivariate normal
e theorem: the conditional distribution of X1|Xz is N (1.2, £11.2) with
prz = g1t T (X — p2)
Y112 Y11+ ):12):;21221

e proof: consider a random vector given by

Xi — 12X 55 Xo B [ SPY v Xl _oa X
Xz |0 I X2 | Xz

which is a linear transformation A of a normal random vector X. The two subvectors
X1 — >:12>:;2lxz and X, are uncorrelated,

Xi — T125 55 Xo

Var { X,

:| — AYA — {/ —21222_21 :| { Y11 Ya :|{ /

0 / o1 Yo

1 —1
Y25
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multivariate normal
e theorem: the conditional distribution of X1|Xz is N (1.2, £11.2) with
pi2 = p1+ 2122§21 (X2 — p2)
Yo = Tu+T¥nia

e proof: consider a random vector given by
Xi — 12X 55 Xo B [ SPY v Xl _oa X
Xo - 0 / Xz - X

which is a linear transformation A of a normal random vector X. The two subvectors
X1 — >:12>:;2lxz and X, are uncorrelated,

Xi — X12¥ 55 Xo . r / —21222_21 Y11 X1 / 0

var |: Xo = ATA = 0 / Y1 X 723222721 I
_ Y11 - Y12Y 55 ¥ 0 / 0
N 221 2 —2/12):2}1 I
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multivariate normal
e theorem: the conditional distribution of X1|Xz is N (1.2, £11.2) with
pi2 = p1+ 2122§21 (X2 — p2)
Y112 PRTINED NPS wwe 29

e proof: consider a random vector given by
Xi — 12X 55 Xo B [ SPY v Xl _oa X
Xo - 0 / Xz - X

which is a linear transformation A of a normal random vector X. The two subvectors
X1 — >:12>:;2lxz and X, are uncorrelated,

X1 — L1255, %o . PR Y S P9 2wy Y11 Ya /
Var|: Xo = AXA - L 0 / Y21 Yoo 723222721
I D XTI 2T Wt WYRENNI) I 0
| Yo Yoo YLy
N D XTI XY 3wt PR
| 0 Y2

therefore independent.

|

0
/

|

70 / 80



multivariate normal
e proof (cont'd): write
X1 = Y1355 Xo+ (X — 212):§21X2)

where the term in brackets is independent of X3, so its conditional distribution given Xz is
consequently the same as its unconditional distribution, which is normal with mean
H1— lezgzluz and variance Y17 — 2122;21221.
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multivariate normal

e proof (cont'd): write
X1 = ):12):§21X2 + (X1 — 212):§21X2)

where the term in brackets is independent of X3, so its conditional distribution given Xz is
consequently the same as its unconditional distribution, which is normal with mean
H1— lezgzluz and variance Y17 — 2122;21221.

e then

E(Xi|X2) = E(T12X55 Xo|X2) + E(X1 — L1255, Xa| Xa)
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multivariate normal
e proof (cont'd): write
X1 = Y1355 Xo+ (X — 212):§21X2)

where the term in brackets is independent of X3, so its conditional distribution given Xz is
consequently the same as its unconditional distribution, which is normal with mean
H1— lezgzluz and variance Y17 — 2122;21221.

e then

E(X1]Xo2) E(Z12X55 Xa|Xa) + E(X1 — £12% 55 Xa| X2)

E(Z12X55 Xa|X2) + E(X1 — Z12555 Xa)
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multivariate normal
e proof (cont'd): write
X1 = Y1355 Xo+ (X — 212):§21X2)

where the term in brackets is independent of X3, so its conditional distribution given Xz is
consequently the same as its unconditional distribution, which is normal with mean
H1— lezgzluz and variance Y17 — 2122;21221.

e then

E(X1]Xo2) E(Z12X55 Xa|Xa) + E(X1 — £12% 55 Xa| X2)
E(Z12X55 Xa|X2) + E(X1 — Z12555 Xa)

i+ L1255 (Xo — pi2)
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multivariate normal
e proof (cont'd): write
X1 = ):12):§21X2 + (X1 — 212):§21X2)
where the term in brackets is independent of X3, so its conditional distribution given Xz is

consequently the same as its unconditional distribution, which is normal with mean
H1— lezgzluz and variance Y17 — 2122;21221.

e then
E(Xi|X2) = E(T12X55 Xo|X2) + E(X1 — L1255, Xa| Xa)
= E(T12X0 Xo|X2) + E(X1 — L12X 55 Xo)
= 1+ XY (X — p2)
Var(X1|X2) = Var(Z12X55 Xo|X2) + Var(Xi — L1235 X2| X2)
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multivariate normal
e proof (cont'd): write
X1 = ):12):§21X2 + (X1 — 212):§21X2)
where the term in brackets is independent of X3, so its conditional distribution given Xz is

consequently the same as its unconditional distribution, which is normal with mean
H1— lezgzluz and variance Y17 — 2122;21221.

e then
E(Xi|X2) = E(T12X55 Xo|X2) + E(X1 — L1255, Xa| Xa)
= E(T12X0 Xo|X2) + E(X1 — L12X 55 Xo)
= 1+ XY (X — p2)
Var(X1|X2) = Var(Z12X55 Xo|X2) + Var(Xi — L1235 X2| X2)

= Var(Z12X55 Xe|Xa) + Var(Xi — T12555 X2)
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multivariate normal
e proof (cont'd): write
X1 = ):12):§21X2 + (X1 — 212):§21X2)
where the term in brackets is independent of X3, so its conditional distribution given Xz is

consequently the same as its unconditional distribution, which is normal with mean
H1— lezgzluz and variance Y17 — 2122;21221.

e then
E(Xi|X2) = E(T12X55 Xo|X2) + E(X1 — L1255, Xa| Xa)
= E(T12X0 Xo|X2) + E(X1 — L12X 55 Xo)
= 1+ T12Xy (Xe — p2)
Var(X1|X2) = Var(Z12X55 Xo|X2) + Var(Xi — L1235 X2| X2)

= Var(T12¥5 Xa|X2) + Var(Xi — 12555 Xa)
= Y Y0¥, Y
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transformations of random vectors

o denote U = (Ui, ..., Uy), with Ui = gi(X1,..., Xa) for i =1,...,n.
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transformations of random vectors
o denote U = (Ui, ..., Uy), with Ui = gi(X1,..., Xa) for i =1,...,n.
o let the support set be Qx = {x : fx(x) > 0}

o find partitions Ao, A1, Az, ..., Ak such that P(X € Ag) = 0 and g is a one-to-one (injective)
transformation within each A;, j > 0
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transformations of random vectors
o denote U = (Ui, ..., Uy), with Ui = gi(X1,..., Xa) for i =1,...,n.
o let the support set be Qx = {x : fx(x) > 0}

o find partitions Ao, A1, Az, ..., Ak such that P(X € Ag) = 0 and g is a one-to-one (injective)
transformation within each A;, j > 0

e we then have inverse transformations x1 = hyj(u1,...,Un), ..., Xn = hpj(v1,. .., un) for each j >0
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transformations of random vectors

denote U = (Ui, ..., Us), with U; = gi(Xq, ..

let the support set be Qx = {x : fx(x) > 0}

L Xp)fori=1,...,n.

find partitions Ao, A1, Az, ..., Ak such that P(X € Ao) = 0 and g is a one-to-one (injective)

transformation within each A;, j > 0

we then have inverse transformations x; = hyj(us, ..

the Jacobian term is given by

Ox1
ou

Bx;
ouy

Ixp
Ouy

Ix1
ou

(9)<§
duz

Ixp
Ouz

sy ln)y ooy Xn = hpi(un, ..
9x1 Bhlj(u) Bhlj(u)
Ou, ou ou
dxs Ohgitu)  Bhaj{u)
Oup _ Ouy Ouz
Oxp Ohyj(u) Ohyj(u)
Ounp Ouy Ouz
...,nand j=1 ... k

with x; = hjj(u) for any x; € Aj with i =1,

.,uUp) foreach j >0

c’}hlj(u)

ou,
Bhaj(u)
Oup

Ohnj(u)
Oup
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transformations of random vectors

o then...

k
fu(U1, ey un) = Z fx(h1j(U1, ooy un), .. .,hnj(Ll1, ey Un)) |JJ|,
Jj=1
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transformations of random vectors

o then...

k
fu(U1, ey un) = Z fx(h1j(U1, ey Llr,)7 .o .,hnj(Ll1, ey Un)) |Jj|,
Jj=1

o example: joint pdf fx(x1, x2, x3,Xxa) = 2472727874 with 0 < x1 < x2 < x3 < xa < 00 and
U1 :Xl, U2:X27X1, U3:X37X2 and U4:X47X3

- X1=U1, Xo=U1+ Uz, X3=U1 + U+ U3, X4 =Ur + U>+ Uz + Us

— Jacobian

el
[ =)
=)
- Oooo

— so fy(ui,...,us) = 24e 41 —3u2—2u3—us
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a lemma

e lemma: let a,b > 0 and p,q > 1 such that % + % =1, then %ap + %bq > ab with equality if and
only if 8% = b9.
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only if 8% = b9.

o sketch of proof: fix b and minimize
1, 1
gla) = =a"+=p"—ab
(2) p q

with respect to a.
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e lemma: let a,b > 0 and p,q > 1 such that % + % =1, then %ap + %bq > ab with equality if and
only if 8% = b9.
o sketch of proof: fix b and minimize

1, 1
gla) = =a"+=b"-ab
(2) p q

with respect to a. We get

dg(a)

=0 = 2 1-b=0 = b=2""1
da
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a lemma

e lemma: let a,b > 0 and p,q > 1 such that % + % =1, then %ap + %bq > ab with equality if and
only if 8% = b9.

o sketch of proof: fix b and minimize
1, 1
gla) = =a"+=p"—ab
(2) p q

with respect to a. We get

dg(2) =0 = " '—b=0 = b=2a"""
da

The second derivative % =(p—1)a"~! >0, indeed a minimum. The value at the minimum is
1 1

7an+7aq(p71)_ap _ lan+lap_ap =0
q

since % + % =1=qg+p=pg= g(p—1) = p. Equality holds if b = a"?~! = a? = b7. [ ]
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Hélder’s inequality

e theorem: let X and Y denote any two random variables and let p and g satisfy % + % =1, then

[E(XY)| < EIXY| < (E[X|")""(E|Y|")"?
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e proof: the first inequality follows from the fact that

—IXY| < XY < |XY| = —E|XY| <E(XY) < E|[XY].

to prove the second inequality, choose

X Y]
= — d b= —
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Hélder’s inequality

e theorem: let X and Y denote any two random variables and let p and g satisfy % + % =1, then

[E(XY)| < EIXY| < (E[X|")""(E|Y|")"?

e proof: the first inequality follows from the fact that

—IXY| < XY < |XY| = —E|XY| <E(XY) < E|[XY].

to prove the second inequality, choose

X Y]
= — d b= —
7T Expe (E[Y]7)2/%
which, using the lemma, implies
1 XpP 1 X}® X Y]
p (EIX[P) ~ q (E[X]7) — (E[X[P)*/P (E[Y]9)Y/a
XY

(E|X|P)H/p(E[Y|7)1/9

75 / 80



Hélder’s inequality

e proof (cont’d): taking expectations on both sides,

1 EXP | 1 EX E|XY|
p (E[X]P) ~ q(E|X|7) = (E[X[P)Y/P(E|Y]9)!/a

—1.1_
=111
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Hélder’s inequality

e proof (cont’d): taking expectations on both sides,

1EXP 1 EX] EIXY|

p (EIX]P) * q (E[X]7) = (EIX[?)V/P(E[Y]7) /e

—1.1_
=111

=

E|XY]

IN

(EIX|7)"?(E] Y[7)*

which completes the proof.
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applications

Holder: [E(XY)| < E|XY| < (E[X[]?)"P(E|Y|%)"*
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applications

Holder: [E(XY)| < E[XY| < (E|X|")"P(E|Y|%)"9

e selecting p = g = 2, we obtain the Cauchy-Schwarz inequality: for any random variables X and Y,

E(XY)| < EIXY| < VEXD)VE(Y?)

e covariance inequality: applying the Cauchy-Scwartz inequality to
X — px and Y — py yields

|cov(X,Y)| < oxoy
or, equivalently, that |corr(X, Y)| < 1.
e Lyapunov's inequality: set Y =1, replace |X| by |X|" for 1 < r < p and define s = pr to obtain
(EIX|)Y" < (BIX]*)M*

forl<r<s<oo
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Minkowski's inequality

e theorem: let X and Y denote any two random variables, then

(EIX + YI"))? < (EIX]P)"? + (E]Y])?  0<p<oo
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Minkowski's inequality

e theorem: let X and Y denote any two random variables, then

(EIX + YI"))? < (EIX]P)"? + (E]Y])?  0<p<oo

e proof: triangular inequality | X 4+ Y| < |X]| + |Y| ensures that
EIX+Y]P = E(X+Y|IX+ Y]
E (XX + V1P + E(IYIIX + YY)

IN

IN

1/

(E|X\p)1/p(E|X+Y\q(p_1)> q
1/
+(E|Y|p)1/p(E\X+Y|q(pfl)) 9

for 1/p+1/q = 1 where Hdlder's inequality was applied twice.

78 / 80



Minkowski's inequality

1/
e proof (cont'd): dividing by (E|X—|— Y\q(pfl)) q,

E| X+ Y|?
(E[X+ Y |ap-1))/a

(EIX]P)YP + (B|Y|)"/?
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Minkowski's inequality

1/
o proof (cont'd): dividing by (E|X-+Y/7) !

E| X+ Y|?
(E|X 4 Y|ae=1)/1

(EIX]P)YP + (B|Y|)"/?

andsince%+%:1:>p+q:pq:>qp—q:p,

E|X + Y|P _ EIX+YP

(E|X+ Y|ale—1)*/9 (E|X+Y|p)"/7
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Minkowski's inequality

1/
.mwummdymmmgw(mx+ywkﬂ)1

E| X+ Y|?
(E|X+Y|ae-)/ =

(E[X[P)MP + (E| Y [P)M/P
and since%+%:1:>p+q:pq:>qp—q:p,

E|X + Y|P _ EIX+YP
(E|X+ Y|ale—1)*/9 (E|X+Y|p)"/7

= (BIX+YP) s
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Minkowski's inequality

1/
e proof (cont'd): dividing by (E|X+ Y\q(pfl)) q,

E|X + Y|?
(E|X+Y|ae-)/ =

(EIX]P)YP + (B|Y|)"/?

andsince%+%:1:>p+q:pq:>qp—q:p,

E|X + Y|P _ _EX+YP
(BIX+Y[ae-0)"" (B]X+ Y)Y/
= (BIX+ Y] 3
= (EIX+Y[]")?

which completes the proof.
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Reference:

o Casella and Berger, Ch. 4

Exercises:

e 4.1,4.4-47,4.9, 410, 4.13, 4.15, 4.22, 4.24, 4.26, 4.30, 4.32, 4.37, 4.38, 4.41-4.43, 4.47, 4.58,
4.59.
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