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random vector

• definition: an n-dimensional random vector is a function from the sample space S into the
n-dimensional Euclidean space Rn

• example: consider the experiment of tossing two fair dice, and let X and Y denote the sum of the
two dice and the absolute difference of the two dice, respectively

P(X = 5,Y = 3) = P({(1, 4), (4, 1)}) =
2
36

=
1
18

• definition: let (X ,Y ) denote a discrete bivariate random vector, then the joint pmf fX ,Y (x , y)
from R2 into R is given by f (x , y) = P(X = x ,Y = y)

• we can now discuss probabilities of events defined in terms of (X ,Y ).
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joint pmf

• the joint pmf completely characterizes the probability distribution of a random vector (X ,Y ) just
as in the univariate case

P
(
(X ,Y ) ∈ A

)
=

∑
(x,y)∈A

fX ,Y (x , y)

• expectations are defined

E[g(X ,Y )] =
∑

(x,y)∈R2

g(x , y)fX ,Y (x , y)

• fortunately, the expectation operator continues to have the same properties as before; in particular

E[a g(X ,Y ) + b h(X ,Y ) + c] = aE[g(X ,Y )] + b E[h(X ,Y )] + c
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properties of joint pdfs

joint pmf satisfies the usual properties (verify), namely

(i) fX ,Y (x , y) ≥ 0 for any (x , y)

(ii)
∑

(x,y)∈R2 fX ,Y (x , y) = 1

and thus it is a well-defined probability distribution.
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marginal pmfs

• there may be events, probabilities, moments or expectations that involve only one of the random
variables in the vector.

• theorem (CB 4.1.6): let (X ,Y ) denote a discrete bivariate random vector with joint pmf
fX ,Y (x , y), then the marginal pmfs of X and Y are respectively

fX (x) = P(X = x) =
∑
y∈R

fX ,Y (x , y)

fY (y) = P(Y = y) =
∑
x∈R

fX ,Y (x , y)

we use the subscript X in fX (x) to emphasize the distinction from fX ,Y (x , y).
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same marginals, different joint pmfs

• same marginal pmfs ≠⇒ same joint pmfs.

• counterexample: define

fX ,Y (0, 0) = fX ,Y (0, 1) =
1
6

fX ,Y (1, 0) = fX ,Y (1, 1) =
1
3

fX ,Y (x , y) = 0 for any other (x , y)

the marginals are

fX (0) =
1
3
, fX (1) =

2
3

fY (0) =
1
2
, fY (1) =

1
2
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• counterexample: define

fX ,Y (0, 0) = fX ,Y (0, 1) =
1
6

fX ,Y (1, 0) = fX ,Y (1, 1) =
1
3

fX ,Y (x , y) = 0 for any other (x , y)

the marginals are

fX (0) =
1
3
, fX (1) =

2
3

fY (0) =
1
2
, fY (1) =

1
2

7 / 80



same marginals, different joint pmfs

• same marginal pmfs ≠⇒ same joint pmfs.
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same marginals, different joint pmfs

• counterexample (cont’d): now define

gXY (0, 0) =
1
12

gXY (0, 1) =
3
12

gXY (1, 0) =
5
12

gXY (1, 1) =
3
12

gXY (x , y) = 0 for any other (x , y)

the marginals are

gX (0) =
1
3
, gX (1) =

2
3

gY (0) =
1
2
, gY (1) =

1
2

• fX (0) = gX (0), fX (1) = gX (1), fY (0) = gY (0), fY (1) = gY (1) but fX ,Y (x , y) ̸= gXY (x , y).

• intuitive since marginals contain less information than joint pmfs.
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joint and marginal pdfs

• definition: a function fX ,Y (x , y) from R2 into R is the joint pdf of the continuous bivariate
random vector (X ,Y ) if, for every A ⊂ R2,

P
(
(X ,Y ) ∈ A

)
=

x

A

fX ,Y (x , y) dx dy

− the joint pdf is such that fX ,Y (x , y) ≥ 0 for all (x , y) ∈ R2 and that
∫∞
−∞

∫∞
−∞ fX ,Y (x , y) dx dy = 1

− expectations are just like in the discrete case, but with integrals

E[g(X ,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x , y)fX ,Y (x , y) dx dy

• definition: the marginal pdfs are given by (you can also verify that this distribution is proper)

fX (x) =

∫ ∞

−∞
fX ,Y (x , y) dy , −∞ < x < ∞

fY (y) =

∫ ∞

−∞
fX ,Y (x , y) dx , −∞ < y < ∞
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example

• example: let (X ,Y ) denote a continuous bivariate random vector with joint pdf fX ,Y (x , y) = 6xy2

for (x , y) in the unit square and zero otherwise.∫ ∞

−∞

∫ ∞

−∞
fX ,Y (x , y)dx dy =

∫ 1

0

∫ 1

0
6xy2 dx dy

=

∫ 1

0

(
3x2y2)1

0 dy =

∫ 1

0
3y2 dy =

(
y3)1

0 = 1

fX (x) =

∫ ∞

−∞
fX ,Y (x , y) dy =

∫ 1

0
6xy2 dy = 6x

(
y3/3

)1
0 = 2x

fY (y) =

∫ ∞

−∞
fX ,Y (x , y) dx =

∫ 1

0
6xy2 dx = 6y2 (x2/2

)1
0 = 3y2
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example

• example (cont’d): let (X ,Y ) denote a continuous bivariate random vector with joint pdf
fX ,Y (x , y) = 6xy2 for (x , y) in the unit square and zero otherwise.

− Consider now calculating the probability that X + Y ≥ 1.

− The region over which we integrate is

A = {(x , y) : x + y ≥ 1, 0 < x < 1, 0 < y < 1}
= {(x , y) : x ≥ 1 − y , 0 < x < 1, 0 < y < 1}
= {(x , y) : 1 − y ≤ x < 1, 0 < x < 1, 0 < y < 1}

− So

P(X + Y ≥ 1) =

∫ 1

0

∫ 1

1−y
6xy2 dx dy = 0.9
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a more complicated example

• example 2: let (X ,Y ) denote a continuous bivariate random vector with joint pdf
fX ,Y (x , y) = e−y for 0 < x < y < ∞.

P(X + Y ≥ 1) = 1 − P(X + Y < 1)

= 1 −
∫ 1/2

0

∫ 1−x

x

e−y dy dx

= 1 −
∫ 1/2

0

(
e−x − e−(1−x)

)
dx

= 1 −
(
−e−

1
2 + e0 − e−

1
2 + e−1

)
= 2 e−1/2 − e−1

given that ΩXY = {(x , y) : x + y ≥ 1, 0 < x < y < ∞} is the unbounded region with three sides
given by x = y , x + y = 1, and x = 0
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regions from the example
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joint cdf

• the joint probability distribution of (X ,Y ) is also completely described with the joint cdf
FX ,Y (x , y) = P(X ≤ x ,Y ≤ y) for all (x , y) ∈ R2

• characterization: not very handy for discrete random vectors, but extremely useful for continuous
random vectors given that

FX ,Y (x , y) =

∫ y

−∞

∫ x

−∞
fX ,Y (u, v)du dv

and hence, by the fundamental theorem of calculus,

∂2FX ,Y (x , y)

∂x∂y
= fX ,Y (x , y)

at any continuity point of fX ,Y (x , y)
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conditional probability

• definition: let (X ,Y ) denote a discrete bivariate random vector with joint pmf fX ,Y (x , y) and
marginals fX (x) and fY (y), then the conditional pmf of Y given X = x is

fY |X (y |x) = P(Y = y |X = x) =
fX ,Y (x , y)

fX (x)

for any x such that fX (x) = P(X = x) > 0

• just checking to be on the safe side. . .

(i) fY |X (y |x) ≥ 0 for every y given that fX ,Y (x , y) ≥ 0 and fX (x) > 0

(ii)
∑

y fY |X (y |x) =
∑

y fX,Y (x,y)

fX (x)
= fX (x)

fX (x)
= 1

15 / 80
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marginals fX (x) and fY (y), then the conditional pmf of Y given X = x is

fY |X (y |x) = P(Y = y |X = x) =
fX ,Y (x , y)

fX (x)

for any x such that fX (x) = P(X = x) > 0
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continuous random variables

• if X and Y are continuous random variables, then P(X = x) = 0 for every value of x and hence
we cannot divide the joint probability by the probability of the conditioning event

• however, we may still define the conditional probability of Y given X = x analogously to the
discrete case with pdfs replacing pmfs

• definition: let (X ,Y ) be a continuous bivariate random vector with joint pdf fX ,Y (x , y) and
marginals fX (x) and fY (y), then the conditional pdf of Y given X = x is

fY |X (y |x) =
fX ,Y (x , y)

fX (x)

for any x such that fX (x) > 0. Analogously,

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)

for any y such that fY (y) > 0.
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conditional expectation

• conditional pdfs/pmfs are useful not only to compute conditional probabilities, but also to
calculate conditional expectations

E
[
g(Y )|X = x

]
=


∑

y g(y)fY |X (y |x) if discrete∫∞
−∞ g(y)fY |X (y |x) dy if continuous

• the conditional expectation satisfies all the properties of the usual expectation operator

• in particular, E(Y |X ) provides the best guess at Y based on knowledge of X in a MSE sense (you
can try to show this!)

• note that fY |X (y |x) is function of x . So we really have a family of distributions, one for each x ,
possibly with different E(Y |X = x).

− the notation Y |X describes the entire family of distributions.
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interesting example

• let’s see a case where, even though the conditional variance does not depend on the value of x,
knowledge of the latter considerably reduces the variability of Y

• example: let (X ,Y ) have a joint pdf fX ,Y (x , y) = e−y for 0 < x < y < ∞, then

fX (x) =

∫ ∞

−∞
fX ,Y (x , y) dy =

∫ ∞

x

e−y dy = e−x

fY |X (y |x) =
fX ,Y (x , y)

fX (x)
= e−(y−x) for y > x

and hence X ∼ Exp(1) and Y |X = x is also exponential with location parameter x

E(Y |X = x) =

∫ ∞

x

yfY |X (y |x)dy =

∫ ∞

x

ye−(y−x) dy = 1 + x

var(Y |X = x) = E(Y 2|X = x)− [E(Y |X = x)]2

=

∫ ∞

x

y2e−(y−x) dy − (1 + x)2 = 1
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but why is it interesting?

• conditional variance does not depend on x , but does that mean it is equal to the unconditional
variance?

fY (y) =

∫ ∞

−∞
fX ,Y (x , y) dx =

∫ y

0
e−y dx = ye−y

remember: the gamma distribution is given by

f (x |α, β) =
1

Γ(α)βα
xα−1e−

x
β , for

for 0 < t < ∞, α, β > 0 and Γ(α) = (α− 1)!. Hence Y ∼ G(α, β), with α = 2 and β = 1,
implying that var(Y ) = αβ2 = 2.

• even though the conditional variance does not depend on the value of x , knowledge of the latter
considerably reduces the variability of Y

var(Y |X = x) = c ≠⇒ var(Y ) = c

• we will come back to this point later
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independence

• E[g(Y )|X ] is a random variable whose values typically depend on the value of X , unless
independent (X ⊥⊥ Y )

• definition: let (X ,Y ) denote a bivariate random vector with joint pdf/pmf fX ,Y (x , y) and
marginals fX (x) and fY (y), then X and Y are independent if

fX ,Y (x , y) = fX (x)fY (y)

• This immediately implies that fY |X (y |x) = fY (y), since

fY |X (y |X = x) =
fX ,Y (x , y)

fX (x)
=

fX (x)fY (y)

fX (x)
= fY (y)

and the knowledge of x does not inform the distribution of Y
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a note of caution

• two pdfs that differ only a zero-measure set define the same probability distribution for (X ,Y ).

• so definition may fail to hold on sets with measure zero. But in this case X and Y are still
independent.

• to see this, take fX ,Y (x , y) and f ∗X ,Y (x , y) equal everywhere except on A for which
∫
A

∫
dx dy = 0.

• let (X ,Y ) have pdf fX ,Y (x , y), (X ∗,Y ∗) have pdf f ∗X ,Y (x , y), and B ⊂ R2. Then

P((X ,Y ) ∈ B) =

∫
B

∫
f (x , y) dx dy =

∫
B∩Ac

∫
f (x , y) dx dy

=

∫
B∩Ac

∫
f ∗(x , y) dx dy =

∫
B

∫
f ∗(x , y) dx dy

= P((X∗,Y ∗) ∈ B)

• for example, take fX ,Y (x , y) = e−(x+y) with x , y > 0, describing two independent exponential random
variables.

• and take f ∗X ,Y (x , y) = fX ,Y (x , y) except that f ∗X ,Y (x , y) = 0 if x = y in A = {(x , x), x > 0}.
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• to see this, take fX ,Y (x , y) and f ∗X ,Y (x , y) equal everywhere except on A for which
∫
A

∫
dx dy = 0.

• let (X ,Y ) have pdf fX ,Y (x , y), (X ∗,Y ∗) have pdf f ∗X ,Y (x , y), and B ⊂ R2. Then

P((X ,Y ) ∈ B) =

∫
B

∫
f (x , y) dx dy =

∫
B∩Ac

∫
f (x , y) dx dy

=

∫
B∩Ac

∫
f ∗(x , y) dx dy =

∫
B

∫
f ∗(x , y) dx dy

= P((X∗,Y ∗) ∈ B)

• for example, take fX ,Y (x , y) = e−(x+y) with x , y > 0, describing two independent exponential random
variables.

• and take f ∗X ,Y (x , y) = fX ,Y (x , y) except that f ∗X ,Y (x , y) = 0 if x = y in A = {(x , x), x > 0}.
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independence
• theorem (CB 4.2.7): let (X ,Y ) be a bivariate random vector with joint pdf f (x , y). Then X and
Y are independent if, and only if, there exist functions g(x) and h(y) such that, for every x ∈ R
and y ∈ R,

f (x , y) = g(x)h(y)

• proof (⇒): trivial setting g(x) = fX (x) and h(y) = fY (y).
• proof (⇐): suppose that f (x , y) = g(x)h(y) and define∫ ∞

−∞
g(x) dx = c and

∫ ∞

−∞
h(y) dy = d

so cd satisfies

cd =

(∫ ∞

−∞
g(x)dx

)(∫ ∞

−∞
h(y) dy

)
=

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
f (x , y) dx dy = 1
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independence

• proof (⇐) (cont’d): the marginals are given by

fX (x) =

∫ ∞

−∞
g(x)h(y)dy = g(x)d

fY (y) =

∫ ∞

−∞
g(x)h(y)dx = h(y)c

⇓
f (x , y) = g(x)h(y) = g(x)h(y)cd = fX (x)fY (y)

establishing the desired result. ■

• example: Consider f (x , y) = 1
384x

2y4e−y− x
2 with x , y > 0 and

g(x) =

{
x2e−x/2 x > 0
0 x ≤ 0

and h(y) =

{
1

384y
4e−y y > 0

0 y ≤ 0

by theorem above, it follows immediately that X and Y are independent.
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independence and support of the joint pdf

• the support set matters: independence can be ruled out in simple cases.

• denote the support of the marginals as A = {x : fX (x) > 0} and B = {y : fY (y) > 0}

• if X and Y independent, then f (x , y) = fX (x)fY (y) > 0 on the set {(x , y) : x ∈ A, y ∈ B}

− define A× B = {(x , y) : x ∈ A, y ∈ B}, denoted cross-product set

− if the set {(x , y) : f (x , y) > 0} is not a cross-product, X and Y cannot be independent.

− in one of the examples above, we have support set 0 < x < y < ∞, so not only 0 < x , y < ∞ but
also x < y , so not independent.
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independence and support of the joint pdf

• theorem (CB 4.2.10): let X and Y be independent variables

(i) for any A ⊂ R and B ⊂ R, P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B). That is, the events {X ∈ A}
and {Y ∈ B} are independent

(ii) let g(x) be a function of x and h(y) be a function of y . Then

E(g(X )h(Y )) = E(g(X ))E(h(Y ))

• proof (ii): Notice that

E(g(X )h(Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)f (x , y) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX (x)fY (x) dx dy

= E(g(X ))E(h(Y ))
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independence and support of the joint pdf

• proof (i): Set g(X ) = 1(x ∈ A), h(Y ) = 1(y ∈ B). Notice that

E [1(x ∈ A)] =

∫ ∞

−∞
IA(x)fX (x)dx =

∫
A

fX (x) dx = P(X ∈ A)

E [1(y ∈ B)] =

∫ ∞

−∞
IB(y)fY (y) dy =

∫
B

fY (y) dy = P(Y ∈ B)

E [IAB(x , y)] =

∫ ∞

−∞

∫ ∞

−∞
IAB(x , y)fX (x)fY (y)dx dy

=

∫
B

∫
A

fX (x)fY (y) dx dy = P(X ∈ A,Y ∈ B)

and apply (ii). ■
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independence and moment generating functions

• theorem (CB 4.2.12): let X and Y be independent random variables with moment generating
functions MX (t) and MY (t). Then the mgf of Z = X + Y is

MZ (t) = MX (t)MY (t)

• proof:

MZ (t) = E
(
etZ
)

= E
(
et(X+Y )

)
=
(
EetX

)(
EetY

)
= MX (t)MY (t)

■
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independence and support of the joint pdf

• example/corollary (CB 4.2.14): let X ∼ N(µ, σ2) and Y ∼ N(γ, τ2), independent. Then
Z = X + Y ∼ N(µ+ γ, σ2 + τ2).

• proof: X and Y have mgf representations

MX (t) = eµt+σ2t2/2

MY (t) = eγt+τ2t2/2

then

MZ (t) = e(µ+γ)t+(σ2+τ2)t2/2

which is the mgf of a normal random variable with mean µ+ γ and variance σ2 + τ2 ■
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discrete random vectors

• let (X ,Y ) be a bivariate random vector with known probability distribution.

• Consider a new bivariate random vector (U,V ) such that U = g1(X ,Y ) and V = g2(X ,Y )

− (U,V ) ∈ B ⇔ (X ,Y ) ∈ A, A =
{
(x , y) :

(
g1(x , y), g2(x , y)

)
∈ B

}
− P

(
(U,V ) ∈ B

)
= P

(
(X ,Y ) ∈ A

)
− keeping track of the support: from ΩX ,Y = {(x , y) : fX ,Y (x , y) > 0} to

ΩU,V = {(u, v) : u = g1(x , y), v = g2(x , y) for some (x , y) ∈ ΩX ,Y }

− In the discrete case,

fUV (u, v) = P(U = u,V = v) = P
(
(X ,Y ) ∈ Ω

(uv)
X ,Y

)
=

∑
(x,y)∈Ω

(uv)
X,Y

fX ,Y (x , y)

where Ωuv
X ,Y = {(x , y) ∈ ΩX ,Y : g1(x , y) = u, g2(x , y) = v}.
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sum of Poisson variables
example (CB 4.3.1): let X and Y be independent Poisson random variables with joint pmf given by
fX ,Y (x , y) =

e−θθx

x!
e−λλy

y !
. also let U = X + Y and V = Y .

• the support of the Poisson is ΩX ,Y = {(x , y) : x ∈ N, y ∈ N}

• then ΩU,V = {(u, v) : v = 0, 1, 2, . . . and u = v , v + 1, v + 2 . . .}

• Ω
(uv)
X ,Y consists of only the single point (u − v , v) and

fU,V (u, v) = fX ,Y (u − v , v) =
e−θθu−v

(u − v)!

e−λλv

v !

• theorem/application: X ∼ P(θ), Y ∼ P(λ) and X ⊥ Y ⇒ X + Y ∼ P(θ + λ)

fU(u) =
u∑

v=0

e−θθu−v

(u − v)!

e−λλv

v !
= e−(θ+λ)

u∑
v=0

θu−vλv

v !(u − v)!

=
e−(θ+λ)

u!

u∑
v=0

(
u

v

)
θu−vλv =

e−(θ+λ)

u!
(θ + λ)u

binomial theorem is used in the last equality: (x + y)n =
∑n

k=0

(
n
k

)
xn−kyn.
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continuous random vector

• let X and Y be continuous random variables with joint pdf fX ,Y (x , y).

• as before, the support set ΩX ,Y = {(x , y) : fX ,Y (x , y) > 0} maps into

ΩU,V = {(u, v) : u = g1(x , y), v = g2(x , y) for some (x , y) ∈ ΩX ,Y }

• for now, assume that transformation g : ΩX ,Y → ΩU,V is bijective: for each (u, v) ∈ ΩU,V there is
only one pair (x , y) ∈ ΩX ,Y .

• we can solve the inverse transformation x = h1(u, v) and y = h2(u, v).
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continuous random vector

• theorem (CB page 158): the pdf of (U,V ) is given by

fU,V (u, v) = fX ,Y

(
h1(u, v), h2(u, v)

)
· |J|

where J is the Jacobian of the transformation

J =

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

x = h1(u, v), y = h2(u, v) and | · | is the determinant.

• the term |J| gives a "magnification factor" for area in going from u-v coordinates to x-y
coordinates, just like in the univariate case.

• intuition for proof: draw rectangles in both coordinates and compute equivalent areas accounting
for magnification.
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product of betas

• example (CB 4.3.3): we want to find the distribution of the product of independent betas
X ∼ B(α, β) and Y ∼ B(α+ β, γ).

• each B(α, β) distribution is given by

f (x |α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1 − x)β−1

with 0 < x < 1. So the joint distribution of X and Y is

fX ,Y (x , y) =
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
xα−1(1 − x)β−1yα+β−1(1 − y)γ−1

• we really don’t care about V , but we choose one such that the mapping is bijective: let U = XY
and V = X , then ΩU,V = {(u, v) : 0 < u < v < 1}

• then we obtain the marginal for U to get the final answer.
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product of betas

• so

fU,V (u, v) = fX ,Y (v , u/v)

∣∣∣∣∂x∂u ∂y

∂v
− ∂y

∂u

∂x

∂v

∣∣∣∣
= fX ,Y (v , u/v)

∣∣0(−u/v2)− 1(1/v)
∣∣

=
1
v
fX ,Y (v , u/v)

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
vα−2(1 − v)β−1

(u
v

)α+β−1 (
1 − u

v

)γ−1

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1

(u
v
− u
)β−1 (

1 − u

v

)γ−1 u

v2
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v

)α+β−1 (
1 − u

v

)γ−1

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1

(u
v
− u
)β−1 (

1 − u

v

)γ−1 u

v2
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marginal is also beta

• Taking the marginal for U,

fU(u) =

∫ 1

u

fU,V (u, v)dv

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1

∫ 1

u

(u
v
− u
)β−1 (

1 − u

v

)γ−1 u

v2 dv

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1 − u)β+γ−1

×
∫ 1

u

(
u/v − u

1 − u

)β−1(1 − u/v

1 − u

)γ−1
u

v2(1 − u)
dv

=
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1 − u)β+γ−1

∫ 1

0
zβ−1(1 − z)γ−1 dz

defining

z =
u/v − u

1 − u
⇒ dz = − u

v2(1 − u)
dv
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marginal is also beta

• so

fU(u) =
Γ(α+ β + γ)

Γ(α)Γ(β)Γ(γ)
uα−1(1 − u)β+γ−1

∫ 1

0
zβ−1(1 − z)γ−1︸ ︷︷ ︸

=
Γ(β)Γ(γ)
Γ(β+γ)

dz

=
Γ(α+ β + γ)

Γ(α)Γ(β + γ)
uα−1(1 − u)β+γ−1 U ∼ B(α, β + γ)

• where the last identity comes from recognizing the integrand as the kernel of a Beta pdf and using
CB 3.3.17.
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sum and difference of standard normals

• example (CB 4.3.4): let X ∼ N(0, 1) and Y ∼ N(0, 1) be independent, then U = X + Y and
V = X − Y are also normal random variables

fU,V (u, v) = fX ,Y

(u + v

2
,
u − v

2

) ∣∣∣∣12
(
−1

2

)
− 1

2
1
2

∣∣∣∣
=

1
2
fX ,Y

(u + v

2
,
u − v

2

)
=

1
2

1
2π

e−
(u+v)2

8 e−
(u−v)2

8

=
1
4π

e−
u2+2uv+v2

8 − u2−2uv+v2
8

=
1
4π

e−
u2
4 e−

v2
4

=

(
1√

2π
√

2
e−

u2
4

)(
1√

2π
√

2
e−

v2
4

)

• U ∼ N(0, 2) and V ∼ N(0, 2) are also independent (it actually holds as long as same variance)
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independence

• there is a much simpler, but very important, situation in which the new variables U and V are
independent

• theorem (CB 4.3.5): let X and Y be independent random variables, then U = g(X ) and
V = h(Y ) are also independent.

• proof: consider the continuous case and define Ωu = {x : g(x) ≤ u} and Ωv = {y : h(y) ≤ v},
then

FU,V (u, v) = P(U ≤ u,V ≤ v)

= P(X ∈ Ωu,Y ∈ Ωv )

= P(X ∈ Ωu)P(Y ∈ Ωv )

fU,V (u, v) =
∂2

∂u∂v
FU,V (u, v)

=

(
d
du

P(X ∈ Ωu)

)(
d
dv

P(Y ∈ Ωv )

)
the first term is a function only of u and the second term is a function only of v ■
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find a partition if necessary

• in some situations of interest the transformation is not bijective...

• find a partition A0,A1, . . . ,Ak of ΩX ,Y , for which the set A0 is such that P
(
(X ,Y ) ∈ A0

)
= 0,

whereas (U,V ) =
(
g1(X ,Y ), g2(X ,Y )

)
is one-to-one from Ai to ΩU,V for each i = 1, . . . , k

• Then...

fU,V (u, v) =
k∑

i=1

fX ,Y

(
h1i (u, v), h2i (u, v)

)
|Ji |

just like in the univariate case.
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ratio of independent normal variables

example: let U = X/Y and V = |Y |, with X ∼ N(0, 1) ⊥⊥ Y ∼ N(0, 1)

• ΩU,V = {(u, v) : v > 0}

• A0 = {(x , y) : y = 0}, A1 = {(x , y) : y > 0}, A2 = {(x , y) : y < 0}

• h11(u, v) = uv , h21(u, v) = v ⇒ |J1| = |v · 1 − u · 0| = |v |

• h12(u, v) = −uv , h21(u, v) = −v ⇒ |J2| = |(−v) · (−1) + u · 0| = |v |

• Using the result above,

fU,V (u, v) =
1
2π

e−(uv)2/2 e−v2/2 |v |+ 1
2π

e−(−uv)2/2 e−(−v)2/2 |v |

= (v/π) e−(1+u2)v2/2 −∞ < u < ∞ 0 < v < ∞
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ratio of independent normal variables

• the distribution of the ratio of independent normals is the marginal of U:

fU(u) =

∫ ∞

0
(v/π) e−(u2+1)v2/2 dv

=
1
2π

∫ ∞

0
e−z(1+u2)/2 dz

where we used z = v2 ⇒ dz = 2v dv . By noticing that the integrand is kernel of exponential pdf
with β = 2

u2+1 , we get that ∫ ∞

0
e−z(1+u2)/2 dz =

2
1 + u2

and therefore

fU(u) =
1
2π

2
1 + u2 =

1
π(1 + u2)

−∞ < u < ∞

which is a Cauchy distribution. (intuitive, right?...)
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hierarchy

• we have so far seen probability models in which a random variable has a single distribution,
possibly depending on some fixed parameters

• however. . . it is sometimes useful to think about distributions with random parameters that
follow themselves some known distribution

• advantage the main benefit is to handle intricate structures by means of a sequence of relatively
simple models in a hierarchy

• classic example: how many eggs will survive on average if an insect lays a large number of eggs,
each surviving with probability p?
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binomial-Poisson hierarchy
• let’s make some assumptions. . .

• large number of eggs is a random variable N ∼ Poisson(λ)

• each egg’s survival is independent and hence we may model their survival as Bernoulli trials
X |N ∼ Bin(N, p)

P(X = x) =
∞∑
n=0

P(X = x ,N = n) =
∞∑
n=0

P(X = x |N = n)P(N = n)

=
∞∑
n=x

(
n

x

)
px(1 − p)n−x e−λλn

n!

= e−λ(λp)x
∞∑
n=x

n!

(n − x)!x!
(1 − p)n−x λn−x

n!

=
e−λ(λp)x

x!

∞∑
n=x

[(1 − p)λ]n−x

(n − x)!
=

e−λ(λp)x

x!

∞∑
t=0

[(1 − p)λ]t

t!

=
e−λ(λp)x

x!
e(1−p)λ =

(λp)xe−λp

x!
⇒ X ∼ Poisson(λp)
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law of iterated expectations (LIE)

• theorem: if X and Y are any two random variables, then

E(X ) = E
[
E(X |Y )

]
as long as the expectations exist.

• proof: fX ,Y (x , y) = fX |Y (x |y)fY (y) by definition, and hence

E(X ) =

∫ ∞

−∞

∫ ∞

−∞
xfX ,Y (x , y) dx dy

=

∫ ∞

−∞

[∫ ∞

−∞
xfX |Y (x |y) dx

]
fY (y) dy

=

∫ ∞

−∞
E(X |y)fY (y)dy = E

[
E(X |Y )

]
■

• binomial-Poisson hierarchy: E(X ) = E
[
E(X |N)

]
= E(Np) = λp
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mixture of distributions

• definition: a random variable X has a mixture distribution if the distribution of X depends on a
quantity that also has a distribution

• any distribution arising from a hierarchy meets this definition

• example: Poisson(λp) is a mixture distribution as it results from the combination of a binomial
distribution Bin(N, p) and N ∼ Poisson(λ)

• example: there is nothing to stop the hierarchy at two layers of structure there are now a large
number of mother insects from which we draw one at random
X |N ∼ Bin(N, p)
N|Λ ∼ Poisson(λ)
Λ ∼ Exp(θ)
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noncentral chi-squared distribution

• apart from aiding understanding, the hierarchical structure also helps with some moment
calculations

• example: let X have a noncentral chi-squared distribution with p degrees of freedom and
noncentrality parameter λ, then

fX (x |λ, p) =
∞∑
k=0

xp/2+k−1e−x2

Γ(p/2 + k)2p/2+k

λke−λ

k!

it is not so messy to compute E(X ) if one realizes that X |K ∼ χ2
p/2+K and K ∼ Poisson(λ)

E(X ) = E
[
E(X |K)

]
= E(p + 2K) = p + 2λ
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conditional variance identity

• theorem: var(X ) = E
[
var(X |Y )

]
+ var

[
E(X |Y )

]
• proof:

var(X ) = E[X − E(X )]2

= E[X − E(X |Y ) + E(X |Y )− E(X )]2

= E[X − E(X |Y )]2 + E[E(X |Y )− E(X )]2

+ 2E
{
[X − E(X |Y )][E(X |Y )− E(X )]

}
LIE
= E

(
E
{
[X − E(X |Y )]2|Y

})
+ var

[
E(X |Y )

]
+ 2E

(
E
{
[X − E(X |Y )][E(X |Y )− E(X )]|Y

})
= E

[
var(X |Y )

]
+ var
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E(X |Y )

]
+ 2E
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how to gauge the strength of a relationship?

• let X and Y measure the weight and volume of a sample of water

− if we gauge the pair (X ,Y ) in several samples and plot them

− then data points should fall on a straight line in the absence of measurement errors

• let X and Y measure the body weight and height of a person

− if we gauge the pair (X ,Y ) in several samples and plot them

− then data points should also exhibit a upward trend, though not exactly a straight line
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definitions

• the covariance between X and Y is

cov(X ,Y ) = E
[
(X − µX )(Y − µY )

]
= E(XY )− µXµY ,

with µX = E(X ) and µY = E(Y ), whereas the correlation is

corr(X ,Y ) = E
(
X − µX

σX

Y − µY

σY

)
=

1
σXσY

cov(X ,Y ),

with σX =
√

var(X ) and σY =
√

var(Y )

• independence (CB 4.5.5): if X and Y are independent random variables then
cov(X ,Y ) = corr(X ,Y ) = 0
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counterexamples

Independence implies E(XY ) = E(X )E(Y ), but not vice-versa.

1. let X be -1 or 1 with probability 0.5. Let Y be 0 if X = −1. If X = 1, Y is randomly -1 or 1 with
probability 0.5. X and Y are not independent

− however. . .

E(XY ) = −1 · 0 · P(X = −1) + 1 · 1 · P(X = 1,Y = 1)
+1 · −1 · P(X = 1,Y = −1)

= 0

and E(X ) = E(Y ) = 0.

2. A standard normal distribution is such that E(X ) = E(X 3) = 0. Take Y = X 2. Then

cov(X ,Y ) = E(XY )− E(X ) · E(Y ) = 0
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example of a linear relationship

• example: let X ∼ U(0, 1) ⊥⊥ Z ∼ U(0, 1/10) and Y = X + Z .

• the joint pdf of (X ,Y ) is fX ,Y (x , y) = 10 for 0 < x < 1 and x < y < x + 1/10
− Why? Either do transformations, or think of Y |X = x = x + Z ∼ U(x , x + 1

10 ). Multiplying by this
conditional pdf by the marginal pdf of X yields the pdf above.

• then

E(Y ) = E(X ) + E(Z) = 1/2 + 1/20 = 11/20

cov(X ,Y ) = E(XY )− E(X )E(Y ) = E
[
X (X + Z)

]
− E(X )E(X + Z)

= E(X 2) + E(XZ)−
[
E(X )

]2 − E(X )E(Z)

= var(X ) =
1
12

(1 − 0)2 =
1
12

var(Y ) = var(X + Z) = var(X ) + var(Z) =
1
12

+
1

1200
=

101
1200

corr(X ,Y ) =
cov(X ,Y )√
var(X )var(Y )

=
1/12√

1/12 × 101/1200
=

√
100
101
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example of a nonlinear relationship

• example: let X ∼ U(−1, 1) ⊥⊥ Z ∼ U(0, 1/10) and Y = X 2 + Z , then the joint pdf of (X ,Y ) is
fX ,Y (x , y) = 5 for −1 < x < 1 and x2 < y < x2 + 1/10, with

cov(X ,Y ) = E(XY )− E(X )E(Y )

= E
[
X (X 2 + Z)

]
− E(X )E(X 2 + Z)

= E(X 3) + E(XZ)− E(X )E(X 2)− E(X )E(Z)
= E(X 3) + E(X )E(Z)− E(X )E(X 2)− E(X )E(Z)
= 0

given that E(X ) = E(X 3) = 0 due to the symmetric nature of X

• there is a strong dependence between X and Y , but it is not linear...
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how does it look like?

53 / 80



linear dependence

• theorem (CB 4.5.7): For any random variables X and Y ,

(i) |corr(X ,Y )| ≤ 1

(ii) |corr(X ,Y )| = 1 if and only if there exist numbers a ̸= 0 and b such that P(Y = aX + b) = 1, with
a > 0 if corr(X ,Y ) > 0 and a < 0 if corr(X ,Y ) < 0

• proof of (i): define h(t) = E
[
(X − µX )t + (Y − µY )

]2
h(t) = t2E(X − µX )

2 + 2tE(X − µX )(Y − µY ) + E(Y − µY )
2

= t2σ2
X + 2tcov(X ,Y ) + σ2

Y

so h(t) ≥ 0, ∀t and hence it can have at most one real root, implying a nonpositive discriminant
(remember Bhaskara?),[

2 cov(X ,Y )
]2 − 4σ2

Xσ
2
Y ≤ 0 ⇒ −σXσY ≤ cov(X ,Y ) ≤ σXσY

⇒ |corr(X ,Y )| ≤ 1
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linear dependence

• proof of (ii): now, corr(X ,Y ) = 1 ⇔
[
2t cov(X ,Y )

]2 − 4t2σ2
Xσ

2
Y = 0, i.e., h(t) has a single root.

Given that
[
(X − µX )t + (Y − µY )

]2 ≥ 0 for all t, h(t) = 0 if and only if

P
([

(X − µX )t + (Y − µY )
]2

= 0
)

= 1

⇓
P ((X − µX )t + (Y − µY ) = 0) = 1

which is equivalent to P(Y = aX + b) = 1 with a = −t = cov(X ,Y )

σ2
X

and b = µX t + µY ■

• we will see that the Cauchy-Schwartz inequality considerably shortens the proof above
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variance decomposition

• theorem (CB 4.5.6): if X and Y are any two random variables, and a and b are any two
constants, then

var(aX + bY ) = a2 var(X ) + b2 var(Y ) + 2ab cov(X ,Y )

• proof: it follows from E(aX + bY ) = aµX + bµY that

var(aX + bY ) = E
[
(aX + bY )− (aµX + bµY )

]2
= E

[
a(X − µX ) + b(Y − µY )

]2
= E

[
a2(X − µX )

2 + b2(Y − µY )2 + 2 a(X − µX ) b(Y − µY )
]

= a2[E(X − µX )
2]+ b2E

[
(Y − µY )2

]
+2 ab E

[
(X − µX )(Y − µY )

]
= a2 var(X ) + b2 var(Y ) + 2ab cov(X ,Y ) ■

• the variation in X + Y is inferior to the sum of the variations in X and Y if cov(X ,Y ) < 0
because large values of X are more likely to occur with small values of Y
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bivariate normal

• definition: the bivariate normal distribution with parameters µX , µY , σ2
X > 0, σ2

Y > 0 and |ρ| < 1

fX ,Y (x , y) =
1

2πσXσY
√
ρ

exp

{
− 1

2(1 − ρ2)

[(
x − µX

σX

)2

+

(
y − µY

σY

)2

−2ρ
x − µX

σX

y − µY

σY

]}
for −∞ < x < ∞ and −∞ < x < ∞.

• the following properties hold (proofs left as exercise):

− corr(X ,Y ) = ρ

− X ∼ N(µX , σ
2
X ) and Y ∼ N(µY , σ2

Y )

− X |Y ∼ N
(
µX + ρ σX

σY
(Y − µY ), σ2

X (1 − ρ2)
)
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joint, marginal and conditional probabilities

• discrete: the joint pmf of X = (X1, . . . ,Xn) ⊂ Rn is a function fX (x) such that

P(X ∈ A) =
∑
x∈A

fX (x)

for any A ⊂ Rn

• continuous: the joint pdf of X = (X1, . . . ,Xn) ⊂ Rn is a function fX (x) such that

P(X ∈ A) =

∫
· · ·
∫
A

f (x1, . . . , xn) dx1 · · · dxn

for any A ⊂ Rn

• expectation:

E[g(x)] =

{ ∫∞
−∞ · · ·

∫∞
−∞ g(x) fX (x) dx if continuous∑

x∈Rn g(x) fX (x) if discrete
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joint, marginal and conditional probabilities

• discrete: the joint pmf of X = (X1, . . . ,Xn) ⊂ Rn is a function fX (x) such that

P(X ∈ A) =
∑
x∈A
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joint, marginal and conditional probabilities

• marginals with respect to a subset of the variables can be obtained integrating with respect to the
other variables

f (x1, . . . , xk) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x1, . . . , xn) dxk+1 · · · dxn

• similarly, the conditional pdf is

f (xk+1, . . . , xn|x1, . . . , xk) =
f (x1, . . . , xn)

f (x1, . . . , xk)
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example

• example: let

f (x1, x2, x3, x4) =

{ 3
4 (x

2
1 + x2

2 + x2
3 + x2

4 ) 0 < xi < 1, i = 1, 2, 3, 4
0 o.w.

• verify that:

(i)
∫ 1
0
∫ 1
0
∫ 1
0
∫ 1
0 f (x1, x2, x3, x4) dx1 dx2 dx3 dx4 = 1

(ii) P
(
X1 < 1

2 ,X2 < 3
4 ,X4 > 1

2

)
= 3

256

(iii) f (x1, x2) =
3
4 (x

2
1 + x2

2 ) +
1
2

(iv) EX1X2 = 5
16

(v) f (x3, x4|x1, x2) =
x2
1+x2

2+x2
3+x2

4
x2
1+x2

2+
2
3
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multinomial distribution

• Bernoulli trials now have n distinct outcomes, with probabilities p1, . . . , pn, common across trials.
Xi represents the number of times that the ith outcome happened among m trials.

• example: toss a six-sided dice and let Z be the outcome. The dice is unbalanced and
P(Z = z) = z

21 . Consider now tossing the dice ten times, and Xi counts the number of times i
came up. Then X = (X1,X2, . . . ,X6) has a multinomial distribution with m = 10 trials, n = 6
possible outcomes, and

f (0, 0, 1, 2, 3, 4) =
10!

0!0!1!2!3!4!

(
1
21

)0( 2
21

)0( 3
21

)1( 4
21

)2( 5
21

)3( 6
21

)4

= 0.0059
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multinomial distribution

• definition: let n and m denote positive integers, then the discrete random vector
X = (X1, . . . ,Xn) has a multinomial distribution with m trials and cell probabilities
0 ≤ p1, . . . , pn ≤ 1 such that

∑n
i=1 pi = 1 if the joint pmf of X is given by

fX (x1, . . . , xn) =
m!

x1! · · · xn!
px1

1 · · · pxn
n = m!

n∏
i=1

pxi
i

xi !

for x = (x1, . . . , xn) such that each integer xi ≥ 0 and
∑n

i=1 xi = m
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marginal and conditional pmfs of a multinomial

if the discrete random vector X = (X1, . . . ,Xn) is multinomial with m trials and cell probabilities
0 ≤ p1, . . . , pn ≤ 1, (you may try to show these properties)

• the marginal of Xi is binomial Bin(m, pi )

• the conditional distribution of (X1, . . . ,Xi−1,Xi+1, . . . ,Xn) given Xi = xi is multinomial with
m − xi trials and cell probabilities pj/(1 − pi ) for 1 ≤ j ̸= i ≤ n

• there is some negative correlation given that
∑n

i=1 Xi = m corr(Xi ,Xj) = −mpipj for
1 ≤ i ̸= j ≤ n
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independence

• definition: let X 1, . . . ,X n denote random vectors with joint pdf/pmf fX (x1, . . . , xn) and marginal
pdf/pmf fX i (xi ), then they are mutually independent random vectors if, for every (x1, . . . , xn),

fX (x1, . . . , xn) = fX1(x1) · · · fXn (xn) =
n∏

i=1

fX i (xi )

• we now need to generalize the results we had for independent bivariate distributions
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independence

if X1, . . . ,Xn are independent,

(1) let g1, . . . , gn be real-valued functions such that gi (xi ) is a function only of xi .

E
[
g1(X1) · · · gn(Xn)

]
=

n∏
i=1

E
[
gi (X1)

]

(2) let MX1(t), . . . ,MXN (t) be the mgfs of X1, . . . ,XN and Z =
∑n

i=1 Xi . Then

MZ (t) =
n∏

i=1

MXi (t)

(3) let a1, . . . , an, b1, . . . , bn be fixed constants and Z =
∑n

i=1 aiXi + bi . Then

MZ (t) =
(
et

∑
bi
) n∏

i=1

MXi (ai t)
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independence

if X1, . . . ,Xn are independent,

(4) X1, . . . ,XN are independent if, and only if, there exists functions gi (xi ) such that

f (x1, . . . , xn) =
n∏

i=1

gi (xi )

(5) U1 = g1(X1), . . . ,Un = gn(Xn) are also mutually independent
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independence and normality

• example (CB 3.6.10): Xi ∼ N(µi , σ
2
i ), mutually independent. Let a1, . . . , an, b1, . . . , bn be fixed

constants. Then

Z =
n∑

i=1

(aiXi + bi ) ∼ N

(
n∑

i=1

(aiµi + bi ),
n∑

i=1

a2
i σ

2
i

)

• proof: the mgf of a normal random variable is M(t) = eµt+σ2t2/2. Then

MZ (t) =
(
et

∑
bi
) n∏

i=1

eµi ai t+σ2
i a

2
i t

2/2

= et
∑

(aiµi+bi )+(
∑

a2i σ
2
i )t

2/2

which is the mgf of a N
(∑n

i=1(aiµi + bi ),
∑n

i=1 a
2
i σ

2
i

)
. ■
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multivariate normal

• the pdf of multivariate normal distributions is

fX (x) =
1

(2π)n/2 |Σ|
− 1

2 e−
1
2 (x−µ)′Σ−1(x−µ)

for n-dimensional X . Denote X ∼ N(µ,Σ).

• lemma: let Z ∼ N(0, In) and X = µ+Σ1/2Z . Then X ∼ N(µ,Σ).

• proof: the distribution of Z is

fZ (z) =
1

(2π)n/2 e
− 1

2 z′z

and the transformation x = µ+Σ1/2z has Jacobian |Σ|−1/2.

• lemma: if Y = AX + b, then Y ∼ N(Aµ+ b,AΣA′).

• proof: follows from previous slide.
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multivariate normal
• take a partition X = [X ′

1,X
′
2]

′, with X ∼ N(µ,Σ) and let

µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
• theorem: X1 and X2 are independent if and only if Σ12 = 0.

• proof (⇒): this is immediate (independent random variables imply zero correlation)

• proof (⇐): let Σ12 = 0 and write

Σ =

(
Σ11 0
0 Σ22

)
then

fX (x) =
1

(2π)n/2 |Σ|
− 1

2 exp

{
−1

2
(x − µ)′Σ−1(x − µ)

}
=

1
(2π)n1/2 |Σ11|−

1
2 exp

{
−1

2
(x1 − µ1)

′Σ−1
11 (x1 − µ1)

}
× 1
(2π)n2/2 |Σ22|−

1
2 exp

{
−1

2
(x2 − µ2)

′Σ−1
22 (x2 − µ2)

}
= fX1(x1) · fX2(x2)
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multivariate normal
• theorem: the conditional distribution of X1|X2 is N (µ1·2,Σ11·2) with

µ1·2 = µ1 +Σ12Σ
−1
22 (X2 − µ2)

Σ11·2 = Σ11 +Σ12Σ
−1
22 Σ21

• proof: consider a random vector given by[
X1 − Σ12Σ

−1
22 X2

X2

]
=

[
I −Σ12Σ

−1
22

0 I

] [
X1

X2

]
= A

[
X1

X2

]
which is a linear transformation A of a normal random vector X . The two subvectors
X1 − Σ12Σ

−1
22 X2 and X2 are uncorrelated,

Var

[
X1 − Σ12Σ

−1
22 X2

X2

]
= AΣA′ =

[
I −Σ12Σ

−1
22

0 I

] [
Σ11 Σ12

Σ21 Σ22

] [
I 0

−Σ′
12Σ

−1
22 I

]
=

[
Σ11 − Σ12Σ

−1
22 Σ21 0

Σ21 Σ22

] [
I 0

−Σ′
12Σ

−1
22 I

]
=

[
Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22

]
therefore independent.
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multivariate normal
• proof (cont’d): write

X1 = Σ12Σ
−1
22 X2 + (X1 − Σ12Σ

−1
22 X2)

where the term in brackets is independent of X2, so its conditional distribution given X2 is
consequently the same as its unconditional distribution, which is normal with mean
µ1 − Σ12Σ

−1
22 µ2 and variance Σ11 − Σ12Σ

−1
22 Σ21.

• then

E(X1|X2) = E(Σ12Σ
−1
22 X2|X2) + E(X1 − Σ12Σ

−1
22 X2|X2)

= E(Σ12Σ
−1
22 X2|X2) + E(X1 − Σ12Σ

−1
22 X2)

= µ1 +Σ12Σ
−1
22 (X2 − µ2)

Var(X1|X2) = Var(Σ12Σ
−1
22 X2|X2) + Var(X1 − Σ12Σ

−1
22 X2|X2)

= Var(Σ12Σ
−1
22 X2|X2) + Var(X1 − Σ12Σ

−1
22 X2)

= Σ11 − Σ12Σ
−1
22 Σ21

■
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transformations of random vectors

• denote U = (U1, . . . ,Un), with Ui = gi (X1, . . . ,Xn) for i = 1, . . . , n.

• let the support set be ΩX = {x : fX (x) > 0}

• find partitions A0,A1,A2, . . . ,Ak such that P(X ∈ A0) = 0 and g is a one-to-one (injective)
transformation within each Aj , j > 0

• we then have inverse transformations x1 = h1j(u1, . . . , un), . . . , xn = hnj(u1, . . . , un) for each j > 0

• the Jacobian term is given by

Jj =

∣∣∣∣∣∣∣∣∣∣

∂x1
∂u1

∂x1
∂u2

· · · ∂x1
∂un

∂x2
∂u1

∂x2
∂u2

· · · ∂x2
∂un

...
. . . · · ·

...
∂xn
∂u1

∂xn
∂u2

· · · ∂xn
∂un

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

∂h1j (u)
∂u1

∂h1j (u)
∂u2

· · · ∂h1j (u)
∂un

∂h2j (u)
∂u1

∂h2j (u)
∂u2

· · · ∂h2j (u)
∂un

...
. . . · · ·

...
∂hnj (u)
∂u1

∂hnj (u)
∂u2

· · · ∂hnj (u)
∂un

∣∣∣∣∣∣∣∣∣∣∣
with xi = hij(u) for any xi ∈ Aj with i = 1, . . . , n and j = 1, . . . , k
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transformations of random vectors

• then...

fU(u1, . . . , un) =
k∑

j=1

fX
(
h1j(u1, . . . , un), . . . , hnj(u1, . . . , un)

)
|Jj |,

• example: joint pdf fX (x1, x2, x3, x4) = 24e−x1−x2−x3−x4 with 0 < x1 < x2 < x3 < x4 < ∞ and
U1 = X1, U2 = X2 − X1, U3 = X3 − X2 and U4 = X4 − X3

− X1 = U1, X2 = U1 + U2, X3 = U1 + U2 + U3, X4 = U1 + U2 + U3 + U4

− Jacobian

J =

∣∣∣∣∣∣∣
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

∣∣∣∣∣∣∣ = 1

− so fU (u1, . . . , u4) = 24e−4u1−3u2−2u3−u4
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U1 = X1, U2 = X2 − X1, U3 = X3 − X2 and U4 = X4 − X3

− X1 = U1, X2 = U1 + U2, X3 = U1 + U2 + U3, X4 = U1 + U2 + U3 + U4

− Jacobian

J =

∣∣∣∣∣∣∣
1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

∣∣∣∣∣∣∣ = 1

− so fU (u1, . . . , u4) = 24e−4u1−3u2−2u3−u4
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a lemma

• lemma: let a, b > 0 and p, q > 1 such that 1
p
+ 1

q
= 1, then 1

p
ap + 1

q
bq ≥ ab with equality if and

only if ap = bq.

• sketch of proof: fix b and minimize

g(a) =
1
p
ap +

1
q
bq − ab

with respect to a. We get

dg(a)

da
= 0 ⇒ ap−1 − b = 0 ⇒ b = ap−1

The second derivative d2g(a)
da2 = (p− 1)ap−1 > 0, indeed a minimum. The value at the minimum is

1
p
ap +

1
q
aq(p−1) − ap =

1
p
ap +

1
q
ap − ap = 0

since 1
p
+ 1

q
= 1 ⇒ q + p = pq ⇒ q(p − 1) = p. Equality holds if b = ap−1 ⇒ ap = bq. ■
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Hölder’s inequality

• theorem: let X and Y denote any two random variables and let p and q satisfy 1
p
+ 1

q
= 1, then

|E(XY )| ≤ E|XY | ≤ (E|X |p)1/p(E|Y |q)1/q

• proof: the first inequality follows from the fact that

−|XY | ≤ XY ≤ |XY | ⇒ −E|XY | ≤ E(XY ) ≤ E|XY |.

to prove the second inequality, choose

a =
|X |

(E|X |p)1/p
and b =

|Y |
(E|Y |q)1/q

which, using the lemma, implies

1
p

|X |p

(E|X |p) +
1
q

|X |q

(E|X |q) ≥ |X |
(E|X |p)1/p

|Y |
(E|Y |q)1/q

=
|XY |

(E|X |p)1/p(E|Y |q)1/q
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Hölder’s inequality

• proof (cont’d): taking expectations on both sides,

1
p

E|X |p

(E|X |p) +
1
q

E|X |q

(E|X |q)︸ ︷︷ ︸
= 1

p
+ 1

q
=1

≥ E|XY |
(E|X |p)1/p(E|Y |q)1/q

⇓
E|XY | ≤ (E|X |p)1/p(E|Y |q)1/q

which completes the proof. ■
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applications

Hölder: |E(XY )| ≤ E|XY | ≤ (E|X |p)1/p(E|Y |q)1/q

• selecting p = q = 2, we obtain the Cauchy-Schwarz inequality: for any random variables X and Y ,

|E(XY )| ≤ E|XY | ≤
√

E(X 2)
√

E(Y 2)

• covariance inequality: applying the Cauchy-Scwartz inequality to
X − µX and Y − µY yields

|cov(X ,Y )| ≤ σXσY

or, equivalently, that |corr(X ,Y )| ≤ 1.

• Lyapunov’s inequality: set Y = 1, replace |X | by |X |r for 1 < r < p and define s = pr to obtain

(E|X |r )1/r ≤ (E|X |s)1/s

for 1 < r < s < ∞
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Minkowski’s inequality

• theorem: let X and Y denote any two random variables, then

(E|X + Y |p)1/p ≤ (E|X |p)1/p + (E|Y |p)1/p 0 ≤ p < ∞

• proof: triangular inequality |X + Y | ≤ |X |+ |Y | ensures that

E|X + Y |p = E
(
|X + Y ||X + Y |p−1)

≤ E
(
|X ||X + Y |p−1)+ E

(
|Y ||X + Y |p−1)

≤ (E|X |p)1/p
(
E|X+Y |q(p−1)

)1/q

+(E|Y |p)1/p
(
E|X+Y |q(p−1)

)1/q

for 1/p + 1/q = 1 where Hölder’s inequality was applied twice.
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Minkowski’s inequality

• proof (cont’d): dividing by
(
E|X+Y |q(p−1)

)1/q
,

E|X + Y |p

(E|X+Y |q(p−1))
1/q ≤ (E|X |p)1/p + (E|Y |p)1/p

and since 1
p
+ 1

q
= 1 ⇒ p + q = pq ⇒ qp − q = p,

E|X + Y |p

(E|X+Y |q(p−1))
1/q =

E|X + Y |p

(E|X+Y |p)1/q

= (E|X + Y |p)1−
1
q

= (E|X + Y |p)
1
p

which completes the proof. ■
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Reference:

• Casella and Berger, Ch. 4

Exercises:

• 4.1, 4.4–4.7, 4.9, 4.10, 4.13, 4.15, 4.22, 4.24, 4.26, 4.30, 4.32, 4.37, 4.38, 4.41–4.43, 4.47, 4.58,
4.59.
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